A robust B-spline method for two parameter singularly perturbed parabolic differential equations with discontinuous initial condition

A singularly perturbed parabolic problem with two parameters and a discontinuous initial condition is investigated. A singular function is identified to describe the nature of the singularity that arises from this discontinuity and a remainder function is generated by deducting this singular functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2024-12, Vol.70 (6), p.5379-5403
Hauptverfasser: Kumari, Neha, Gowrisankar, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A singularly perturbed parabolic problem with two parameters and a discontinuous initial condition is investigated. A singular function is identified to describe the nature of the singularity that arises from this discontinuity and a remainder function is generated by deducting this singular function from the solution of the given problem. The temporal variable is discretized on a uniform mesh using the implicit Euler method while the spatial variable is discretized on a piecewise uniform Shishkin mesh using the cubic B-spline collocation method. Through error analysis, it is shown that the associated numerical scheme is uniformly convergent with almost second order in space and first order in time. Two test examples are provided to corroborate the findings.
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-024-02168-3