Stability of the parabolic Picard sheaf

Let X be a smooth irreducible complex projective curve of genus g ≥ 2 , and let D = x 1 + ⋯ + x r be a reduced effective divisor on X . Denote by U α ( L ) the moduli space of stable parabolic vector bundles on X of rank n , determinant L of degree d with flag type { { k j i } j = 1 m i } i = 1 r ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2024-11, Vol.134 (2)
Hauptverfasser: Arusha, C, Biswas, Indranil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Proceedings of the Indian Academy of Sciences. Mathematical sciences
container_volume 134
creator Arusha, C
Biswas, Indranil
description Let X be a smooth irreducible complex projective curve of genus g ≥ 2 , and let D = x 1 + ⋯ + x r be a reduced effective divisor on X . Denote by U α ( L ) the moduli space of stable parabolic vector bundles on X of rank n , determinant L of degree d with flag type { { k j i } j = 1 m i } i = 1 r . Assume that the greatest common divisor of the collection of integers { degree ( L ) , { k j i } j = 1 m i } i = 1 r } } is 1; this condition ensures that there is a Poincaré parabolic vector bundle on X × U α ( L ) . The direct image, to U α ( L ) , of the vector bundle underlying the Poincaré parabolic vector bundle is called the parabolic Picard sheaf. We prove that the parabolic Picard sheaf is stable.
doi_str_mv 10.1007/s12044-024-00805-2
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3134326091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3134326091</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-94dbac857a875309f843acc3856cbd5609f76019eca4ef2de74625fc73684f073</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK7-AU8FD56ik0y-epRFV2FBQT2HNE3cLmVbk-7Bf2-0godhhuHhfeEh5JLBDQPQt5lxEIICLwMGJOVHZAG1RqqVkcfl5hKpYIKfkrOcdwCsFqgW5Pp1ck3Xd9NXNcRq2oZqdMk1Q9_56qXzLrVV3gYXz8lJdH0OF397Sd4f7t9Wj3TzvH5a3W3oyKSeaC3axnkjtTNaItTRCHTeo5HKN61U5aNV6Q7eiRB5G7RQXEavURkRQeOSXM25Yxo-DyFPdjcc0r5UWmQokJcIViicqTymbv8R0j_FwP4YsbMRW4zYXyOW4zeSxFGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134326091</pqid></control><display><type>article</type><title>Stability of the parabolic Picard sheaf</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Indian Academy of Sciences</source><creator>Arusha, C ; Biswas, Indranil</creator><creatorcontrib>Arusha, C ; Biswas, Indranil</creatorcontrib><description>Let X be a smooth irreducible complex projective curve of genus g ≥ 2 , and let D = x 1 + ⋯ + x r be a reduced effective divisor on X . Denote by U α ( L ) the moduli space of stable parabolic vector bundles on X of rank n , determinant L of degree d with flag type { { k j i } j = 1 m i } i = 1 r . Assume that the greatest common divisor of the collection of integers { degree ( L ) , { k j i } j = 1 m i } i = 1 r } } is 1; this condition ensures that there is a Poincaré parabolic vector bundle on X × U α ( L ) . The direct image, to U α ( L ) , of the vector bundle underlying the Poincaré parabolic vector bundle is called the parabolic Picard sheaf. We prove that the parabolic Picard sheaf is stable.</description><identifier>ISSN: 0253-4142</identifier><identifier>EISSN: 0973-7685</identifier><identifier>DOI: 10.1007/s12044-024-00805-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Proceedings of the Indian Academy of Sciences. Mathematical sciences, 2024-11, Vol.134 (2)</ispartof><rights>Indian Academy of Sciences 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7594-5477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12044-024-00805-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12044-024-00805-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Arusha, C</creatorcontrib><creatorcontrib>Biswas, Indranil</creatorcontrib><title>Stability of the parabolic Picard sheaf</title><title>Proceedings of the Indian Academy of Sciences. Mathematical sciences</title><addtitle>Proc Math Sci</addtitle><description>Let X be a smooth irreducible complex projective curve of genus g ≥ 2 , and let D = x 1 + ⋯ + x r be a reduced effective divisor on X . Denote by U α ( L ) the moduli space of stable parabolic vector bundles on X of rank n , determinant L of degree d with flag type { { k j i } j = 1 m i } i = 1 r . Assume that the greatest common divisor of the collection of integers { degree ( L ) , { k j i } j = 1 m i } i = 1 r } } is 1; this condition ensures that there is a Poincaré parabolic vector bundle on X × U α ( L ) . The direct image, to U α ( L ) , of the vector bundle underlying the Poincaré parabolic vector bundle is called the parabolic Picard sheaf. We prove that the parabolic Picard sheaf is stable.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0253-4142</issn><issn>0973-7685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAQhoMouK7-AU8FD56ik0y-epRFV2FBQT2HNE3cLmVbk-7Bf2-0godhhuHhfeEh5JLBDQPQt5lxEIICLwMGJOVHZAG1RqqVkcfl5hKpYIKfkrOcdwCsFqgW5Pp1ck3Xd9NXNcRq2oZqdMk1Q9_56qXzLrVV3gYXz8lJdH0OF397Sd4f7t9Wj3TzvH5a3W3oyKSeaC3axnkjtTNaItTRCHTeo5HKN61U5aNV6Q7eiRB5G7RQXEavURkRQeOSXM25Yxo-DyFPdjcc0r5UWmQokJcIViicqTymbv8R0j_FwP4YsbMRW4zYXyOW4zeSxFGk</recordid><startdate>20241129</startdate><enddate>20241129</enddate><creator>Arusha, C</creator><creator>Biswas, Indranil</creator><general>Springer India</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-7594-5477</orcidid></search><sort><creationdate>20241129</creationdate><title>Stability of the parabolic Picard sheaf</title><author>Arusha, C ; Biswas, Indranil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-94dbac857a875309f843acc3856cbd5609f76019eca4ef2de74625fc73684f073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arusha, C</creatorcontrib><creatorcontrib>Biswas, Indranil</creatorcontrib><jtitle>Proceedings of the Indian Academy of Sciences. Mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arusha, C</au><au>Biswas, Indranil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the parabolic Picard sheaf</atitle><jtitle>Proceedings of the Indian Academy of Sciences. Mathematical sciences</jtitle><stitle>Proc Math Sci</stitle><date>2024-11-29</date><risdate>2024</risdate><volume>134</volume><issue>2</issue><issn>0253-4142</issn><eissn>0973-7685</eissn><abstract>Let X be a smooth irreducible complex projective curve of genus g ≥ 2 , and let D = x 1 + ⋯ + x r be a reduced effective divisor on X . Denote by U α ( L ) the moduli space of stable parabolic vector bundles on X of rank n , determinant L of degree d with flag type { { k j i } j = 1 m i } i = 1 r . Assume that the greatest common divisor of the collection of integers { degree ( L ) , { k j i } j = 1 m i } i = 1 r } } is 1; this condition ensures that there is a Poincaré parabolic vector bundle on X × U α ( L ) . The direct image, to U α ( L ) , of the vector bundle underlying the Poincaré parabolic vector bundle is called the parabolic Picard sheaf. We prove that the parabolic Picard sheaf is stable.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12044-024-00805-2</doi><orcidid>https://orcid.org/0000-0002-7594-5477</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0253-4142
ispartof Proceedings of the Indian Academy of Sciences. Mathematical sciences, 2024-11, Vol.134 (2)
issn 0253-4142
0973-7685
language eng
recordid cdi_proquest_journals_3134326091
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Indian Academy of Sciences
subjects Mathematics
Mathematics and Statistics
title Stability of the parabolic Picard sheaf
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%20parabolic%20Picard%20sheaf&rft.jtitle=Proceedings%20of%20the%20Indian%20Academy%20of%20Sciences.%20Mathematical%20sciences&rft.au=Arusha,%20C&rft.date=2024-11-29&rft.volume=134&rft.issue=2&rft.issn=0253-4142&rft.eissn=0973-7685&rft_id=info:doi/10.1007/s12044-024-00805-2&rft_dat=%3Cproquest_sprin%3E3134326091%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3134326091&rft_id=info:pmid/&rfr_iscdi=true