Stability of the parabolic Picard sheaf

Let X be a smooth irreducible complex projective curve of genus g ≥ 2 , and let D = x 1 + ⋯ + x r be a reduced effective divisor on X . Denote by U α ( L ) the moduli space of stable parabolic vector bundles on X of rank n , determinant L of degree d with flag type { { k j i } j = 1 m i } i = 1 r ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Indian Academy of Sciences. Mathematical sciences 2024-11, Vol.134 (2)
Hauptverfasser: Arusha, C, Biswas, Indranil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a smooth irreducible complex projective curve of genus g ≥ 2 , and let D = x 1 + ⋯ + x r be a reduced effective divisor on X . Denote by U α ( L ) the moduli space of stable parabolic vector bundles on X of rank n , determinant L of degree d with flag type { { k j i } j = 1 m i } i = 1 r . Assume that the greatest common divisor of the collection of integers { degree ( L ) , { k j i } j = 1 m i } i = 1 r } } is 1; this condition ensures that there is a Poincaré parabolic vector bundle on X × U α ( L ) . The direct image, to U α ( L ) , of the vector bundle underlying the Poincaré parabolic vector bundle is called the parabolic Picard sheaf. We prove that the parabolic Picard sheaf is stable.
ISSN:0253-4142
0973-7685
DOI:10.1007/s12044-024-00805-2