Stability of the parabolic Picard sheaf
Let X be a smooth irreducible complex projective curve of genus g ≥ 2 , and let D = x 1 + ⋯ + x r be a reduced effective divisor on X . Denote by U α ( L ) the moduli space of stable parabolic vector bundles on X of rank n , determinant L of degree d with flag type { { k j i } j = 1 m i } i = 1 r ....
Gespeichert in:
Veröffentlicht in: | Proceedings of the Indian Academy of Sciences. Mathematical sciences 2024-11, Vol.134 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a smooth irreducible complex projective curve of genus
g
≥
2
, and let
D
=
x
1
+
⋯
+
x
r
be a reduced effective divisor on
X
. Denote by
U
α
(
L
)
the moduli space of stable parabolic vector bundles on
X
of rank
n
, determinant
L
of degree
d
with flag type
{
{
k
j
i
}
j
=
1
m
i
}
i
=
1
r
. Assume that the greatest common divisor of the collection of integers
{
degree
(
L
)
,
{
k
j
i
}
j
=
1
m
i
}
i
=
1
r
}
}
is 1; this condition ensures that there is a Poincaré parabolic vector bundle on
X
×
U
α
(
L
)
. The direct image, to
U
α
(
L
)
, of the vector bundle underlying the Poincaré parabolic vector bundle is called the parabolic Picard sheaf. We prove that the parabolic Picard sheaf is stable. |
---|---|
ISSN: | 0253-4142 0973-7685 |
DOI: | 10.1007/s12044-024-00805-2 |