Evaluation of stability and anxiolytic potential of oil-in-water polysaccharide nanoemulsions loaded with chalcone (1E,4E)-1,5-bis(4-methoxyphenyl) penta-1,4-dien-3-one

The desire for products that are healthier, safer, and better for the environment is on the rise in society. Chalcones are aromatic ketones with anxiolytic and antimicrobial properties. The limited solubility, bioavailability, and long-term stability of chalcones hinder their application. Nanoemulsi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical papers 2024-10, Vol.78 (17), p.9205-9222
Hauptverfasser: do Nascimento, Joice Farias, Abreu, Flavia Oliveira Monteiro da Silva, Holanda, Taysse, Castelo, Rachel Menezes, dos Santos, Helcio Silva, de Menezes, Jane Eire Silva Alencar, Guedes, Jesyka Macêdo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The desire for products that are healthier, safer, and better for the environment is on the rise in society. Chalcones are aromatic ketones with anxiolytic and antimicrobial properties. The limited solubility, bioavailability, and long-term stability of chalcones hinder their application. Nanoemulsions can be used as a drug transport system to address this problem. The primary objective of our research was to design nanoemulsions through ANOVA (NE) with nanoscale droplets that would maintain exceptional stability, optimizing the anxiolytic capacity of chalcones. Sodium alginate and chitosan were assessed as the continuous phase material, while commercial soybean oil and mineral oil were used as adjuvants, besides surfactant, for the oil phase composition of the droplets. Results showed that the addition of soybean oil improved significantly the stability of the formulations, as did the use of the alginate matrix. The optimal NE showed a nanometer-sized droplet (126 nm) and negative ζ-potential (− 42 mV), showing good stability under different conditions—it synergistically enhances the anxiolytic potential. The mode of operation is associated with the receptors of the serotonergic system (5-HT). Toxicity, locomotion and anxiety tests performed using the zebrafish animal model showed a promising dose (0.0325 mg/mL) for the development of compounds with anxiolytic properties. Graphical abstract
ISSN:0366-6352
2585-7290
1336-9075
DOI:10.1007/s11696-024-03738-2