Mushrooms for Mushrooms: A Bio-Based Approach to Active Food Packaging

In this study, carbon dots (CDs) were synthesized from Pleurotus ostreatus liquid culture and incorporated into polyvinyl alcohol (PVA) and chitosan (Chi) nanofibers, fabricated via the electroblowing technique to create an active packaging material. TEM analysis confirmed that the synthesized CDs p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food biophysics 2025-03, Vol.20 (1), p.21, Article 21
Hauptverfasser: Karanfіl, Mustafa, Doğan, Nurcan, Akgul, Yasin, Doğan, Cemhan, Ahmed, Salih Birhanu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, carbon dots (CDs) were synthesized from Pleurotus ostreatus liquid culture and incorporated into polyvinyl alcohol (PVA) and chitosan (Chi) nanofibers, fabricated via the electroblowing technique to create an active packaging material. TEM analysis confirmed that the synthesized CDs possessed uniform size and morphology, while UV-Vis spectroscopy validated their optical properties. SEM imaging revealed that the electroblown nanofibers had a smooth surface morphology and uniform distribution of CDs within the PVA-Chi matrix. The nanofibers also exhibited enhanced thermal stability, as determined by thermogravimetric analysis (TGA). The developed CD-PVA-Chi nanofiber packaging was applied to oyster mushrooms, where it significantly reduced weight loss by over 50%, inhibited microbial growth by approximately 60%, and preserved 80% of the mushrooms’ firmness over a 6-day storage period compared to control packaging. The cytotoxicity tests confirmed that the packaging material was non-toxic, making it safe for food contact applications. This study demonstrates that the CD-PVA-Chi nanofiber packaging is a promising, eco-friendly alternative to conventional packaging materials, with potential for extending the shelf life of perishable foods through its bioactive properties and scalability for industrial production.
ISSN:1557-1858
1557-1866
DOI:10.1007/s11483-024-09913-y