Mechanical response study of articulated assembled base course asphalt pavement based on numerical simulation
Compared with the traditional semi-rigid base layer asphalt pavement, assembled base layer asphalt pavement has the advantages of fast construction and low cost. The cooperative deformation ability between the base plates has an important influence on the assembled road, and at this stage, there are...
Gespeichert in:
Veröffentlicht in: | Materials and structures 2024-12, Vol.57 (10), Article 246 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compared with the traditional semi-rigid base layer asphalt pavement, assembled base layer asphalt pavement has the advantages of fast construction and low cost. The cooperative deformation ability between the base plates has an important influence on the assembled road, and at this stage, there are fewer studies that consider the lateral cooperative action of the assembled base layer and the mechanical response under the settlement of the plates. Therefore, this paper reveals the influence law of rebar articulation on the cooperative deformation and plate displacement of assembled roads from the base layer plate structure. This paper establishes a pavement structural model using ABAQUS finite element software and does a sensitivity analysis of the hinged base slab under various load conditions. A thorough examination of the base's collaborative deformation capacity and uneven settlement is carried out, utilizing the assembly-type hinged base as the foundation. The study's findings indicate that the articulated base layer is influenced to varying degrees by the plate modulus, thickness, and traveling load. Variations in the plate modulus and load cause the tensile stress at the plate's bottom to increase by 3.5% and 28%, respectively, while the thickness of the plate causes the tensile stress to decrease by 77.44%. The reinforcement's articulation improves the assembled subgrade's capacity for load transmission, resulting in displacements of the slab under various load positions being reduced by 0.35 mm, 0.92 mm, and 1.59 mm, respectively. The inhomogeneous settlement of the soil base had a significant impact on the corners of the slabs and the asphalt surface layer, but the articulation of the reinforcing bars led to a 7% reduction in slab displacement and a 21% reduction in surface layer shear stress. Soil-base dehollowing had a negative impact on the subgrade slab’s settlement, which was especially significant for the location of the slab corners. |
---|---|
ISSN: | 1359-5997 1871-6873 |
DOI: | 10.1617/s11527-024-02528-2 |