Efficient generation of protein pockets with PocketGen
Designing protein-binding proteins is critical for drug discovery. However, artificial-intelligence-based design of such proteins is challenging due to the complexity of protein–ligand interactions, the flexibility of ligand molecules and amino acid side chains, and sequence–structure dependencies....
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2024-11, Vol.6 (11), p.1382-1395 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Designing protein-binding proteins is critical for drug discovery. However, artificial-intelligence-based design of such proteins is challenging due to the complexity of protein–ligand interactions, the flexibility of ligand molecules and amino acid side chains, and sequence–structure dependencies. We introduce PocketGen, a deep generative model that produces residue sequence and atomic structure of the protein regions in which ligand interactions occur. PocketGen promotes consistency between protein sequence and structure by using a graph transformer for structural encoding and a sequence refinement module based on a protein language model. The graph transformer captures interactions at multiple scales, including atom, residue and ligand levels. For sequence refinement, PocketGen integrates a structural adapter into the protein language model, ensuring that structure-based predictions align with sequence-based predictions. PocketGen can generate high-fidelity protein pockets with enhanced binding affinity and structural validity. It operates ten times faster than physics-based methods and achieves a 97% success rate, defined as the percentage of generated pockets with higher binding affinity than reference pockets. Additionally, it attains an amino acid recovery rate exceeding 63%.
A generative model that leverages a graph transformer and protein language model to generate residue sequences and full-atom structures of protein pockets is introduced, which outperforms state-of-the-art approaches. |
---|---|
ISSN: | 2522-5839 2522-5839 |
DOI: | 10.1038/s42256-024-00920-9 |