Packing internally disjoint Steiner paths of data center networks
Let S ⊆ V ( G ) and π G ( S ) denote the maximum number t of edge-disjoint paths P 1 , P 2 , … , P t in a graph G such that V ( P i ) ∩ V ( P j ) = S for any i , j ∈ { 1 , 2 , … , t } and i ≠ j . If S = V ( G ) , then π G ( S ) is the maximum number of edge-disjoint spanning paths in G . It is prove...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2025, Vol.81 (1), Article 211 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
S
⊆
V
(
G
)
and
π
G
(
S
)
denote the maximum number
t
of edge-disjoint paths
P
1
,
P
2
,
…
,
P
t
in a graph
G
such that
V
(
P
i
)
∩
V
(
P
j
)
=
S
for any
i
,
j
∈
{
1
,
2
,
…
,
t
}
and
i
≠
j
. If
S
=
V
(
G
)
, then
π
G
(
S
)
is the maximum number of edge-disjoint spanning paths in
G
. It is proved [Graphs Combin, 37 (2021) 2521–2533] that deciding whether
π
G
(
S
)
≥
r
is NP-complete for a given
S
⊆
V
(
G
)
. For an integer
r
with
2
≤
r
≤
n
, the
r
-path connectivity of a graph
G
is defined as
π
r
(
G
)
=
min
{
π
G
(
S
)
|
S
⊆
V
(
G
)
and
|
S
|
=
r
}
, which is a generalization of tree connectivity. In this paper, we study the 3-path connectivity of the
k
-dimensional data center network with
n
-port switches
D
k
,
n
which has signification role in the cloud computing, and prove that
π
3
(
D
k
,
n
)
=
⌊
2
n
+
3
k
4
⌋
with
k
≥
0
and
n
≥
3
. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-024-06545-4 |