Numerical Simulation Study on the Stable Combustion of a 660 MW Supercritical Unit Boiler at Ultra-Low Load
To investigate the safe, stable, and economically viable operation of a boiler under ultra-low-load conditions during the deep peaking process of coal-fired units, a numerical simulation study was conducted on a 660 MW front- and rear-wall hedge cyclone burner boiler. The current research on low loa...
Gespeichert in:
Veröffentlicht in: | Processes 2024-11, Vol.12 (11), p.2573 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To investigate the safe, stable, and economically viable operation of a boiler under ultra-low-load conditions during the deep peaking process of coal-fired units, a numerical simulation study was conducted on a 660 MW front- and rear-wall hedge cyclone burner boiler. The current research on low load conditions is limited to achieving stable combustion by adjusting the operating parameters, and few effective boiler operating parameter predictions are given for very low-load conditions, i.e., below 20%. Various burner operation modes under ultra-low load conditions were analyzed using computational fluid dynamics (CFDs) methods; this operation was successfully tested with six types of pulverized coal combustion in this paper, and fitting models for outlet flue gas temperature and NOx emissions were derived based on the combustion characteristics of different types of pulverized coal. The results indicate that under 20% ultra-low-load conditions, the use of lower burners leads to a uniform temperature distribution within the furnace, achieving a minimum NOx emission of 112 ppm and a flue gas temperature of 743 K. Coal type 3, with the highest carbon content and a calorific value of 22,440 kJ/kg, has the highest average section temperature of 1435.76 K. In contrast, coal type 1 has a higher nitrogen content, with a maximum cross-sectional average NOx concentration of 865.90 ppm and an exit NOx emission concentration of 800 ppm. The overall lower NOx emissions of coal type 3 are primarily attributed to its reduced nitrogen content and increased oxygen content, which enhance pulverized coal combustion and suppress NOx formation. The fitting models accurately capture the influence of pulverized coal composition on outlet flue gas temperature and NOx emissions. This control strategy can be extended to the stable combustion of many kinds of coal. For validation, the fitting error bar for the predicted outlet flue gas temperature based on the elemental composition of coal type 6 was 8.09%, whereas the fitting error bar for the outlet NOx emissions was only 1.45%. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12112573 |