Growth Optimizer Algorithm for Economic Load Dispatch Problem: Analysis and Evaluation
The Growth Optimizer algorithm (GO) is a novel metaheuristic that draws inspiration from people’s learning and introspection processes as they progress through society. Economic Load Dispatch (ELD), one of the primary problems in the power system, is resolved by the GO. To assess GO’s dependability,...
Gespeichert in:
Veröffentlicht in: | Processes 2024-11, Vol.12 (11), p.2593 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Growth Optimizer algorithm (GO) is a novel metaheuristic that draws inspiration from people’s learning and introspection processes as they progress through society. Economic Load Dispatch (ELD), one of the primary problems in the power system, is resolved by the GO. To assess GO’s dependability, its performance is contrasted with a number of methods. These techniques include the Rime-ice algorithm (RIME), Grey Wolf Optimizer (GWO), Elephant Herding Optimization (EHO), and Tunicate Swarm Algorithm (TSA). Also, the GO algorithm has the competition of other literature techniques such as Monarch butterfly optimization (MBO), the Sine Cosine algorithm (SCA), the chimp optimization algorithm (ChOA), the moth search algorithm (MSA), and the snow ablation algorithm (SAO). Six units for the ELD problem at a 1000 MW load, ten units for the ELD problem at a 2000 MW load, and twenty units for the ELD problem at a 3000 MW load are the cases employed in this work. The standard deviation, minimum fitness function, and maximum mean values are measured for 30 different runs in order to evaluate all methods. Using the GO approach, the ideal power mismatch values of 3.82627263206814 × 10−12, 0.0000622209480241054, and 5.5893360695336 × 10−7 were found for six, ten, and twenty generator units, respectively. The GO’s dominance over all other algorithms is demonstrated by the results produced for the ELD scenarios. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr12112593 |