Recovery of Titanium from Red Mud Using Carbothermic Reduction and High Pressure Leaching of the Slag in an Autoclave

Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a large number of rare earth elements in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals (Basel) 2024-11, Vol.14 (11), p.1151
Hauptverfasser: Stopic, Srecko, Kostić, Duško, Schneider, Richard, Sievers, Magnus, Wegmann, Florian, Emil Kaya, Elif, Perušić, Mitar, Friedrich, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1151
container_title Minerals (Basel)
container_volume 14
creator Stopic, Srecko
Kostić, Duško
Schneider, Richard
Sievers, Magnus
Wegmann, Florian
Emil Kaya, Elif
Perušić, Mitar
Friedrich, Bernd
description Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a large number of rare earth elements in small quantities. Although certain methods of using red mud already exist, none of them have been widely implemented on a large scale. This paper proposes a combination of two methods for the utilization of red mud, first by carbothermic reduction and then, by leaching under high pressure in an autoclave in order to extract useful components from it with a focus on titanium. In the first part of the work, the red mud was reduced with carbon at 1600 °C in an electric arc furnace, with the aim of removing as much iron as possible using magnetic separation. After separation, the slag is leached in an autoclave at different parameters in order to obtain the highest possible yield of titanium, aiming for the formation of titanium oxysulfate and avoiding silica gel formation. A maximal leaching efficiency of titanium of 95% was reached at 150 °C using 5 mol/L sulfuric acid with 9 bar oxygen in 2 h. We found that high-pressure conditions enabled avoiding the formation of silica gel during leaching of the slag using 5 mol/L sulfuric acid, which is a big problem at atmospheric pressure. Previously silica gel formation was prevented using the dry digestion process with 12 mol/L sulfuric acid under atmospheric pressure.
doi_str_mv 10.3390/min14111151
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133277302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818340717</galeid><sourcerecordid>A818340717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-ca6a70528392b19ced4ec32925aebe4e01d06de3b9d23172204091bad95d9a283</originalsourceid><addsrcrecordid>eNpNUU1rwzAMNWODla6n_QHDjiObP5ImOZayrYOOja6F3YJjK6lLY3d2XOi_n0N36NNBQnpPQjyE7il54rwkz502NKURGb1CI0byLKFT_nN9Ud-iifc7ElFSXmRshMIKpD2CO2Hb4LXuhdGhw42zHV6Bwh9B4Y3XpsVz4Wrbb8F1Wg6jIHttDRZG4YVut_jLgffBAV6CkNtBERdGPv7eixbrgYlnobdyL45wh24asfcw-c9jtHl9Wc8XyfLz7X0-WyaSFkWfSDEVOclYwUtW01KCSkFyVrJMQA0pEKrIVAGvS8U4zRkjaXysFqrMVCmibIweznsPzv4G8H21s8GZeLLilHOW55ywyHo6s1qxh0qbxvZOyBgK4rPWQKNjf1bQgqckp3kUPJ4F0lnvHTTVwelOuFNFSTV4UV14wf8AR0J7fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133277302</pqid></control><display><type>article</type><title>Recovery of Titanium from Red Mud Using Carbothermic Reduction and High Pressure Leaching of the Slag in an Autoclave</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><creator>Stopic, Srecko ; Kostić, Duško ; Schneider, Richard ; Sievers, Magnus ; Wegmann, Florian ; Emil Kaya, Elif ; Perušić, Mitar ; Friedrich, Bernd</creator><creatorcontrib>Stopic, Srecko ; Kostić, Duško ; Schneider, Richard ; Sievers, Magnus ; Wegmann, Florian ; Emil Kaya, Elif ; Perušić, Mitar ; Friedrich, Bernd</creatorcontrib><description>Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a large number of rare earth elements in small quantities. Although certain methods of using red mud already exist, none of them have been widely implemented on a large scale. This paper proposes a combination of two methods for the utilization of red mud, first by carbothermic reduction and then, by leaching under high pressure in an autoclave in order to extract useful components from it with a focus on titanium. In the first part of the work, the red mud was reduced with carbon at 1600 °C in an electric arc furnace, with the aim of removing as much iron as possible using magnetic separation. After separation, the slag is leached in an autoclave at different parameters in order to obtain the highest possible yield of titanium, aiming for the formation of titanium oxysulfate and avoiding silica gel formation. A maximal leaching efficiency of titanium of 95% was reached at 150 °C using 5 mol/L sulfuric acid with 9 bar oxygen in 2 h. We found that high-pressure conditions enabled avoiding the formation of silica gel during leaching of the slag using 5 mol/L sulfuric acid, which is a big problem at atmospheric pressure. Previously silica gel formation was prevented using the dry digestion process with 12 mol/L sulfuric acid under atmospheric pressure.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min14111151</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminium ; Aluminum ; Aluminum oxide ; Atmospheric pressure ; Autoclaves ; Bauxite ; Bayer process ; Calcium ; Calcium compounds ; Carbon dioxide ; Carbothermic reactions ; Contamination ; Efficiency ; Electric arc furnaces ; Energy consumption ; Environmental impact ; Gases ; Health risk assessment ; Health risks ; High pressure ; Hydrogen ; Industrial wastes ; Inorganic compounds ; Iron ; Landfills ; Leaching ; Magnetic separation ; Metal oxides ; Metallurgy ; Metals ; Methods ; Mud ; Pressure leaching ; Rare earth elements ; Rare earth metals ; Red mud ; Separation ; Silica ; Silica gel ; Slag ; Sodium ; Sulfuric acid ; Sulphuric acid ; Sustainability ; Titanium ; Titanium compounds ; Waste disposal sites</subject><ispartof>Minerals (Basel), 2024-11, Vol.14 (11), p.1151</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-ca6a70528392b19ced4ec32925aebe4e01d06de3b9d23172204091bad95d9a283</cites><orcidid>0000-0001-9335-1405 ; 0000-0002-2934-2034 ; 0000-0002-4115-8571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Stopic, Srecko</creatorcontrib><creatorcontrib>Kostić, Duško</creatorcontrib><creatorcontrib>Schneider, Richard</creatorcontrib><creatorcontrib>Sievers, Magnus</creatorcontrib><creatorcontrib>Wegmann, Florian</creatorcontrib><creatorcontrib>Emil Kaya, Elif</creatorcontrib><creatorcontrib>Perušić, Mitar</creatorcontrib><creatorcontrib>Friedrich, Bernd</creatorcontrib><title>Recovery of Titanium from Red Mud Using Carbothermic Reduction and High Pressure Leaching of the Slag in an Autoclave</title><title>Minerals (Basel)</title><description>Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a large number of rare earth elements in small quantities. Although certain methods of using red mud already exist, none of them have been widely implemented on a large scale. This paper proposes a combination of two methods for the utilization of red mud, first by carbothermic reduction and then, by leaching under high pressure in an autoclave in order to extract useful components from it with a focus on titanium. In the first part of the work, the red mud was reduced with carbon at 1600 °C in an electric arc furnace, with the aim of removing as much iron as possible using magnetic separation. After separation, the slag is leached in an autoclave at different parameters in order to obtain the highest possible yield of titanium, aiming for the formation of titanium oxysulfate and avoiding silica gel formation. A maximal leaching efficiency of titanium of 95% was reached at 150 °C using 5 mol/L sulfuric acid with 9 bar oxygen in 2 h. We found that high-pressure conditions enabled avoiding the formation of silica gel during leaching of the slag using 5 mol/L sulfuric acid, which is a big problem at atmospheric pressure. Previously silica gel formation was prevented using the dry digestion process with 12 mol/L sulfuric acid under atmospheric pressure.</description><subject>Aluminium</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Atmospheric pressure</subject><subject>Autoclaves</subject><subject>Bauxite</subject><subject>Bayer process</subject><subject>Calcium</subject><subject>Calcium compounds</subject><subject>Carbon dioxide</subject><subject>Carbothermic reactions</subject><subject>Contamination</subject><subject>Efficiency</subject><subject>Electric arc furnaces</subject><subject>Energy consumption</subject><subject>Environmental impact</subject><subject>Gases</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>High pressure</subject><subject>Hydrogen</subject><subject>Industrial wastes</subject><subject>Inorganic compounds</subject><subject>Iron</subject><subject>Landfills</subject><subject>Leaching</subject><subject>Magnetic separation</subject><subject>Metal oxides</subject><subject>Metallurgy</subject><subject>Metals</subject><subject>Methods</subject><subject>Mud</subject><subject>Pressure leaching</subject><subject>Rare earth elements</subject><subject>Rare earth metals</subject><subject>Red mud</subject><subject>Separation</subject><subject>Silica</subject><subject>Silica gel</subject><subject>Slag</subject><subject>Sodium</subject><subject>Sulfuric acid</subject><subject>Sulphuric acid</subject><subject>Sustainability</subject><subject>Titanium</subject><subject>Titanium compounds</subject><subject>Waste disposal sites</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNUU1rwzAMNWODla6n_QHDjiObP5ImOZayrYOOja6F3YJjK6lLY3d2XOi_n0N36NNBQnpPQjyE7il54rwkz502NKURGb1CI0byLKFT_nN9Ud-iifc7ElFSXmRshMIKpD2CO2Hb4LXuhdGhw42zHV6Bwh9B4Y3XpsVz4Wrbb8F1Wg6jIHttDRZG4YVut_jLgffBAV6CkNtBERdGPv7eixbrgYlnobdyL45wh24asfcw-c9jtHl9Wc8XyfLz7X0-WyaSFkWfSDEVOclYwUtW01KCSkFyVrJMQA0pEKrIVAGvS8U4zRkjaXysFqrMVCmibIweznsPzv4G8H21s8GZeLLilHOW55ywyHo6s1qxh0qbxvZOyBgK4rPWQKNjf1bQgqckp3kUPJ4F0lnvHTTVwelOuFNFSTV4UV14wf8AR0J7fg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Stopic, Srecko</creator><creator>Kostić, Duško</creator><creator>Schneider, Richard</creator><creator>Sievers, Magnus</creator><creator>Wegmann, Florian</creator><creator>Emil Kaya, Elif</creator><creator>Perušić, Mitar</creator><creator>Friedrich, Bernd</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-9335-1405</orcidid><orcidid>https://orcid.org/0000-0002-2934-2034</orcidid><orcidid>https://orcid.org/0000-0002-4115-8571</orcidid></search><sort><creationdate>20241101</creationdate><title>Recovery of Titanium from Red Mud Using Carbothermic Reduction and High Pressure Leaching of the Slag in an Autoclave</title><author>Stopic, Srecko ; Kostić, Duško ; Schneider, Richard ; Sievers, Magnus ; Wegmann, Florian ; Emil Kaya, Elif ; Perušić, Mitar ; Friedrich, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-ca6a70528392b19ced4ec32925aebe4e01d06de3b9d23172204091bad95d9a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminium</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Atmospheric pressure</topic><topic>Autoclaves</topic><topic>Bauxite</topic><topic>Bayer process</topic><topic>Calcium</topic><topic>Calcium compounds</topic><topic>Carbon dioxide</topic><topic>Carbothermic reactions</topic><topic>Contamination</topic><topic>Efficiency</topic><topic>Electric arc furnaces</topic><topic>Energy consumption</topic><topic>Environmental impact</topic><topic>Gases</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>High pressure</topic><topic>Hydrogen</topic><topic>Industrial wastes</topic><topic>Inorganic compounds</topic><topic>Iron</topic><topic>Landfills</topic><topic>Leaching</topic><topic>Magnetic separation</topic><topic>Metal oxides</topic><topic>Metallurgy</topic><topic>Metals</topic><topic>Methods</topic><topic>Mud</topic><topic>Pressure leaching</topic><topic>Rare earth elements</topic><topic>Rare earth metals</topic><topic>Red mud</topic><topic>Separation</topic><topic>Silica</topic><topic>Silica gel</topic><topic>Slag</topic><topic>Sodium</topic><topic>Sulfuric acid</topic><topic>Sulphuric acid</topic><topic>Sustainability</topic><topic>Titanium</topic><topic>Titanium compounds</topic><topic>Waste disposal sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stopic, Srecko</creatorcontrib><creatorcontrib>Kostić, Duško</creatorcontrib><creatorcontrib>Schneider, Richard</creatorcontrib><creatorcontrib>Sievers, Magnus</creatorcontrib><creatorcontrib>Wegmann, Florian</creatorcontrib><creatorcontrib>Emil Kaya, Elif</creatorcontrib><creatorcontrib>Perušić, Mitar</creatorcontrib><creatorcontrib>Friedrich, Bernd</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stopic, Srecko</au><au>Kostić, Duško</au><au>Schneider, Richard</au><au>Sievers, Magnus</au><au>Wegmann, Florian</au><au>Emil Kaya, Elif</au><au>Perušić, Mitar</au><au>Friedrich, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of Titanium from Red Mud Using Carbothermic Reduction and High Pressure Leaching of the Slag in an Autoclave</atitle><jtitle>Minerals (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>14</volume><issue>11</issue><spage>1151</spage><pages>1151-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a large number of rare earth elements in small quantities. Although certain methods of using red mud already exist, none of them have been widely implemented on a large scale. This paper proposes a combination of two methods for the utilization of red mud, first by carbothermic reduction and then, by leaching under high pressure in an autoclave in order to extract useful components from it with a focus on titanium. In the first part of the work, the red mud was reduced with carbon at 1600 °C in an electric arc furnace, with the aim of removing as much iron as possible using magnetic separation. After separation, the slag is leached in an autoclave at different parameters in order to obtain the highest possible yield of titanium, aiming for the formation of titanium oxysulfate and avoiding silica gel formation. A maximal leaching efficiency of titanium of 95% was reached at 150 °C using 5 mol/L sulfuric acid with 9 bar oxygen in 2 h. We found that high-pressure conditions enabled avoiding the formation of silica gel during leaching of the slag using 5 mol/L sulfuric acid, which is a big problem at atmospheric pressure. Previously silica gel formation was prevented using the dry digestion process with 12 mol/L sulfuric acid under atmospheric pressure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min14111151</doi><orcidid>https://orcid.org/0000-0001-9335-1405</orcidid><orcidid>https://orcid.org/0000-0002-2934-2034</orcidid><orcidid>https://orcid.org/0000-0002-4115-8571</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-163X
ispartof Minerals (Basel), 2024-11, Vol.14 (11), p.1151
issn 2075-163X
2075-163X
language eng
recordid cdi_proquest_journals_3133277302
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection
subjects Aluminium
Aluminum
Aluminum oxide
Atmospheric pressure
Autoclaves
Bauxite
Bayer process
Calcium
Calcium compounds
Carbon dioxide
Carbothermic reactions
Contamination
Efficiency
Electric arc furnaces
Energy consumption
Environmental impact
Gases
Health risk assessment
Health risks
High pressure
Hydrogen
Industrial wastes
Inorganic compounds
Iron
Landfills
Leaching
Magnetic separation
Metal oxides
Metallurgy
Metals
Methods
Mud
Pressure leaching
Rare earth elements
Rare earth metals
Red mud
Separation
Silica
Silica gel
Slag
Sodium
Sulfuric acid
Sulphuric acid
Sustainability
Titanium
Titanium compounds
Waste disposal sites
title Recovery of Titanium from Red Mud Using Carbothermic Reduction and High Pressure Leaching of the Slag in an Autoclave
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20Titanium%20from%20Red%20Mud%20Using%20Carbothermic%20Reduction%20and%20High%20Pressure%20Leaching%20of%20the%20Slag%20in%20an%20Autoclave&rft.jtitle=Minerals%20(Basel)&rft.au=Stopic,%20Srecko&rft.date=2024-11-01&rft.volume=14&rft.issue=11&rft.spage=1151&rft.pages=1151-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min14111151&rft_dat=%3Cgale_proqu%3EA818340717%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133277302&rft_id=info:pmid/&rft_galeid=A818340717&rfr_iscdi=true