Recovery of Titanium from Red Mud Using Carbothermic Reduction and High Pressure Leaching of the Slag in an Autoclave
Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a large number of rare earth elements in...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2024-11, Vol.14 (11), p.1151 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Red mud is a by-product of alumina production, which is largely stored in landfills that can endanger the environment. Red mud, or bauxite residue, is a mixture of inorganic compounds of iron, aluminum, sodium, titanium, calcium and silicon mostly, as well as a large number of rare earth elements in small quantities. Although certain methods of using red mud already exist, none of them have been widely implemented on a large scale. This paper proposes a combination of two methods for the utilization of red mud, first by carbothermic reduction and then, by leaching under high pressure in an autoclave in order to extract useful components from it with a focus on titanium. In the first part of the work, the red mud was reduced with carbon at 1600 °C in an electric arc furnace, with the aim of removing as much iron as possible using magnetic separation. After separation, the slag is leached in an autoclave at different parameters in order to obtain the highest possible yield of titanium, aiming for the formation of titanium oxysulfate and avoiding silica gel formation. A maximal leaching efficiency of titanium of 95% was reached at 150 °C using 5 mol/L sulfuric acid with 9 bar oxygen in 2 h. We found that high-pressure conditions enabled avoiding the formation of silica gel during leaching of the slag using 5 mol/L sulfuric acid, which is a big problem at atmospheric pressure. Previously silica gel formation was prevented using the dry digestion process with 12 mol/L sulfuric acid under atmospheric pressure. |
---|---|
ISSN: | 2075-163X 2075-163X |
DOI: | 10.3390/min14111151 |