PredXGBR: A Machine Learning Framework for Short-Term Electrical Load Prediction
The growing demand for consumer-end electrical load is driving the need for smarter management of power sector utilities. In today’s technologically advanced society, efficient energy usage is critical, leaving no room for waste. To prevent both electricity shortage and wastage, electrical load fore...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-11, Vol.13 (22), p.4521 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growing demand for consumer-end electrical load is driving the need for smarter management of power sector utilities. In today’s technologically advanced society, efficient energy usage is critical, leaving no room for waste. To prevent both electricity shortage and wastage, electrical load forecasting becomes the most convenient way out. However, the conventional and probabilistic methods are less adaptive to the acute, micro, and unusual changes in the demand trend. With the recent development of artificial intelligence (AI), machine learning (ML) has become the most popular choice due to its higher accuracy based on time-, demand-, and trend-based feature extractions. Thus, we propose an Extreme Gradient Boosting (XGBoost) regression-based model—PredXGBR-1, which employs short-term lag features to predict hourly load demand. The novelty of PredXGBR-1 lies in its focus on short-term lag autocorrelations to enhance adaptability to micro-trends and demand fluctuations. Validation across five datasets, representing electrical load in the eastern and western USA over a 20-year period, shows that PredXGBR-1 outperforms a long-term feature-based XGBoost model, PredXGBR-2, and state-of-the-art recurrent neural network (RNN) and long short-term memory (LSTM) models. Specifically, PredXGBR-1 achieves an mean absolute percentage error (MAPE) between 0.98 and 1.2% and an R2 value of 0.99, significantly surpassing PredXGBR-2’s R2 of 0.61 and delivering up to 86.8% improvement in MAPE compared to LSTM models. These results confirm the superior performance of PredXGBR-1 in accurately forecasting short-term load demand. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics13224521 |