Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot

Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-11, Vol.13 (22), p.4471
Hauptverfasser: Jeon, Jeong Eun, Hong, Sang Jeen, Han, Seung-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 4471
container_title Electronics (Basel)
container_volume 13
creator Jeon, Jeong Eun
Hong, Sang Jeen
Han, Seung-Soo
description Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based on Fluke’s law. A stacking classifier was applied for fault prediction and severity classification, and logistic regression was used to identify fault components. Additionally, to analyze the frequency bands affecting each failed component and assess the severity of faults involving two mixed components, a hybrid explainable artificial intelligence (XAI) model combining Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) was employed to inform the user about the component causing the fault. This approach demonstrated a high prediction accuracy of 95%, and its integration into real-time monitoring systems is expected to reduce maintenance costs, decrease equipment downtime, and ultimately improve productivity.
doi_str_mv 10.3390/electronics13224471
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133015158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818202656</galeid><sourcerecordid>A818202656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-198ed7b31a01af6f72cc947ad52dd8d8256804a37b8a7d6d61b07f661c9a96ca3</originalsourceid><addsrcrecordid>eNptUU1vEzEQXSEqUZX-Ai6WuMAhxR9Zr32MSguRglqhVnBbzdrjMJVrB9uRgF_Qn82GcODAzGGeRu_j8LruleAXSln-DiO6VnIiV4WScrkcxLPuVPLBLqy08vk_-EV3XusDn8cKZRQ_7Z7uG0X6BY1yYjmwT-C-UUK2QSiJ0pZB8uzqxy4CJZgislVpFMgRRLZODWOkLSaH7M3X1fotC7mwa9jHxm4LenJ_bA8W7wm2KVeqjBL7AgELuyuQ6gF8zlNuL7uTALHi-d971t1fX91dflxsbj6sL1ebhRNWt4WwBv0wKQFcQNBhkM7Z5QC-l94bb2SvDV-CGiYDg9dei4kPQWvhLFjtQJ11r4--u5K_77G28SHvS5ojRyWU4qIXvZlZF0fWFiKOlEJuBdy8Hh_J5YSB5v_KCCO51L2eBeoocCXXWjCMu0KPUH6Ogo-Hmsb_1KR-A0laiYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133015158</pqid></control><display><type>article</type><title>Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jeon, Jeong Eun ; Hong, Sang Jeen ; Han, Seung-Soo</creator><creatorcontrib>Jeon, Jeong Eun ; Hong, Sang Jeen ; Han, Seung-Soo</creatorcontrib><description>Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based on Fluke’s law. A stacking classifier was applied for fault prediction and severity classification, and logistic regression was used to identify fault components. Additionally, to analyze the frequency bands affecting each failed component and assess the severity of faults involving two mixed components, a hybrid explainable artificial intelligence (XAI) model combining Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) was employed to inform the user about the component causing the fault. This approach demonstrated a high prediction accuracy of 95%, and its integration into real-time monitoring systems is expected to reduce maintenance costs, decrease equipment downtime, and ultimately improve productivity.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13224471</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Ball screws ; Breakdowns ; Clustering ; Decision making ; Downtime ; End effectors ; Explainable artificial intelligence ; Fault detection ; Fault diagnosis ; Frequencies ; Machine learning ; Machinery ; Maintenance and repair ; Maintenance costs ; Manufacturing ; Production processes ; Productivity ; Real time ; Robots ; Semiconductor production equipment ; Semiconductors ; Vibration analysis</subject><ispartof>Electronics (Basel), 2024-11, Vol.13 (22), p.4471</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-198ed7b31a01af6f72cc947ad52dd8d8256804a37b8a7d6d61b07f661c9a96ca3</cites><orcidid>0009-0006-9932-3994 ; 0009-0000-2868-5580 ; 0000-0002-6576-690X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jeon, Jeong Eun</creatorcontrib><creatorcontrib>Hong, Sang Jeen</creatorcontrib><creatorcontrib>Han, Seung-Soo</creatorcontrib><title>Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot</title><title>Electronics (Basel)</title><description>Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based on Fluke’s law. A stacking classifier was applied for fault prediction and severity classification, and logistic regression was used to identify fault components. Additionally, to analyze the frequency bands affecting each failed component and assess the severity of faults involving two mixed components, a hybrid explainable artificial intelligence (XAI) model combining Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) was employed to inform the user about the component causing the fault. This approach demonstrated a high prediction accuracy of 95%, and its integration into real-time monitoring systems is expected to reduce maintenance costs, decrease equipment downtime, and ultimately improve productivity.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Ball screws</subject><subject>Breakdowns</subject><subject>Clustering</subject><subject>Decision making</subject><subject>Downtime</subject><subject>End effectors</subject><subject>Explainable artificial intelligence</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Frequencies</subject><subject>Machine learning</subject><subject>Machinery</subject><subject>Maintenance and repair</subject><subject>Maintenance costs</subject><subject>Manufacturing</subject><subject>Production processes</subject><subject>Productivity</subject><subject>Real time</subject><subject>Robots</subject><subject>Semiconductor production equipment</subject><subject>Semiconductors</subject><subject>Vibration analysis</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUU1vEzEQXSEqUZX-Ai6WuMAhxR9Zr32MSguRglqhVnBbzdrjMJVrB9uRgF_Qn82GcODAzGGeRu_j8LruleAXSln-DiO6VnIiV4WScrkcxLPuVPLBLqy08vk_-EV3XusDn8cKZRQ_7Z7uG0X6BY1yYjmwT-C-UUK2QSiJ0pZB8uzqxy4CJZgislVpFMgRRLZODWOkLSaH7M3X1fotC7mwa9jHxm4LenJ_bA8W7wm2KVeqjBL7AgELuyuQ6gF8zlNuL7uTALHi-d971t1fX91dflxsbj6sL1ebhRNWt4WwBv0wKQFcQNBhkM7Z5QC-l94bb2SvDV-CGiYDg9dei4kPQWvhLFjtQJ11r4--u5K_77G28SHvS5ojRyWU4qIXvZlZF0fWFiKOlEJuBdy8Hh_J5YSB5v_KCCO51L2eBeoocCXXWjCMu0KPUH6Ogo-Hmsb_1KR-A0laiYw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jeon, Jeong Eun</creator><creator>Hong, Sang Jeen</creator><creator>Han, Seung-Soo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0006-9932-3994</orcidid><orcidid>https://orcid.org/0009-0000-2868-5580</orcidid><orcidid>https://orcid.org/0000-0002-6576-690X</orcidid></search><sort><creationdate>20241101</creationdate><title>Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot</title><author>Jeon, Jeong Eun ; Hong, Sang Jeen ; Han, Seung-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-198ed7b31a01af6f72cc947ad52dd8d8256804a37b8a7d6d61b07f661c9a96ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Ball screws</topic><topic>Breakdowns</topic><topic>Clustering</topic><topic>Decision making</topic><topic>Downtime</topic><topic>End effectors</topic><topic>Explainable artificial intelligence</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Frequencies</topic><topic>Machine learning</topic><topic>Machinery</topic><topic>Maintenance and repair</topic><topic>Maintenance costs</topic><topic>Manufacturing</topic><topic>Production processes</topic><topic>Productivity</topic><topic>Real time</topic><topic>Robots</topic><topic>Semiconductor production equipment</topic><topic>Semiconductors</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Jeong Eun</creatorcontrib><creatorcontrib>Hong, Sang Jeen</creatorcontrib><creatorcontrib>Han, Seung-Soo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Jeong Eun</au><au>Hong, Sang Jeen</au><au>Han, Seung-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>13</volume><issue>22</issue><spage>4471</spage><pages>4471-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based on Fluke’s law. A stacking classifier was applied for fault prediction and severity classification, and logistic regression was used to identify fault components. Additionally, to analyze the frequency bands affecting each failed component and assess the severity of faults involving two mixed components, a hybrid explainable artificial intelligence (XAI) model combining Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) was employed to inform the user about the component causing the fault. This approach demonstrated a high prediction accuracy of 95%, and its integration into real-time monitoring systems is expected to reduce maintenance costs, decrease equipment downtime, and ultimately improve productivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13224471</doi><orcidid>https://orcid.org/0009-0006-9932-3994</orcidid><orcidid>https://orcid.org/0009-0000-2868-5580</orcidid><orcidid>https://orcid.org/0000-0002-6576-690X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-11, Vol.13 (22), p.4471
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3133015158
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Artificial intelligence
Ball screws
Breakdowns
Clustering
Decision making
Downtime
End effectors
Explainable artificial intelligence
Fault detection
Fault diagnosis
Frequencies
Machine learning
Machinery
Maintenance and repair
Maintenance costs
Manufacturing
Production processes
Productivity
Real time
Robots
Semiconductor production equipment
Semiconductors
Vibration analysis
title Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilization%20of%20Machine%20Learning%20and%20Explainable%20Artificial%20Intelligence%20(XAI)%20for%20Fault%20Prediction%20and%20Diagnosis%20in%20Wafer%20Transfer%20Robot&rft.jtitle=Electronics%20(Basel)&rft.au=Jeon,%20Jeong%20Eun&rft.date=2024-11-01&rft.volume=13&rft.issue=22&rft.spage=4471&rft.pages=4471-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13224471&rft_dat=%3Cgale_proqu%3EA818202656%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133015158&rft_id=info:pmid/&rft_galeid=A818202656&rfr_iscdi=true