Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot
Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-11, Vol.13 (22), p.4471 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 4471 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Jeon, Jeong Eun Hong, Sang Jeen Han, Seung-Soo |
description | Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based on Fluke’s law. A stacking classifier was applied for fault prediction and severity classification, and logistic regression was used to identify fault components. Additionally, to analyze the frequency bands affecting each failed component and assess the severity of faults involving two mixed components, a hybrid explainable artificial intelligence (XAI) model combining Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) was employed to inform the user about the component causing the fault. This approach demonstrated a high prediction accuracy of 95%, and its integration into real-time monitoring systems is expected to reduce maintenance costs, decrease equipment downtime, and ultimately improve productivity. |
doi_str_mv | 10.3390/electronics13224471 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3133015158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818202656</galeid><sourcerecordid>A818202656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-198ed7b31a01af6f72cc947ad52dd8d8256804a37b8a7d6d61b07f661c9a96ca3</originalsourceid><addsrcrecordid>eNptUU1vEzEQXSEqUZX-Ai6WuMAhxR9Zr32MSguRglqhVnBbzdrjMJVrB9uRgF_Qn82GcODAzGGeRu_j8LruleAXSln-DiO6VnIiV4WScrkcxLPuVPLBLqy08vk_-EV3XusDn8cKZRQ_7Z7uG0X6BY1yYjmwT-C-UUK2QSiJ0pZB8uzqxy4CJZgislVpFMgRRLZODWOkLSaH7M3X1fotC7mwa9jHxm4LenJ_bA8W7wm2KVeqjBL7AgELuyuQ6gF8zlNuL7uTALHi-d971t1fX91dflxsbj6sL1ebhRNWt4WwBv0wKQFcQNBhkM7Z5QC-l94bb2SvDV-CGiYDg9dei4kPQWvhLFjtQJ11r4--u5K_77G28SHvS5ojRyWU4qIXvZlZF0fWFiKOlEJuBdy8Hh_J5YSB5v_KCCO51L2eBeoocCXXWjCMu0KPUH6Ogo-Hmsb_1KR-A0laiYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133015158</pqid></control><display><type>article</type><title>Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jeon, Jeong Eun ; Hong, Sang Jeen ; Han, Seung-Soo</creator><creatorcontrib>Jeon, Jeong Eun ; Hong, Sang Jeen ; Han, Seung-Soo</creatorcontrib><description>Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based on Fluke’s law. A stacking classifier was applied for fault prediction and severity classification, and logistic regression was used to identify fault components. Additionally, to analyze the frequency bands affecting each failed component and assess the severity of faults involving two mixed components, a hybrid explainable artificial intelligence (XAI) model combining Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) was employed to inform the user about the component causing the fault. This approach demonstrated a high prediction accuracy of 95%, and its integration into real-time monitoring systems is expected to reduce maintenance costs, decrease equipment downtime, and ultimately improve productivity.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13224471</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Ball screws ; Breakdowns ; Clustering ; Decision making ; Downtime ; End effectors ; Explainable artificial intelligence ; Fault detection ; Fault diagnosis ; Frequencies ; Machine learning ; Machinery ; Maintenance and repair ; Maintenance costs ; Manufacturing ; Production processes ; Productivity ; Real time ; Robots ; Semiconductor production equipment ; Semiconductors ; Vibration analysis</subject><ispartof>Electronics (Basel), 2024-11, Vol.13 (22), p.4471</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-198ed7b31a01af6f72cc947ad52dd8d8256804a37b8a7d6d61b07f661c9a96ca3</cites><orcidid>0009-0006-9932-3994 ; 0009-0000-2868-5580 ; 0000-0002-6576-690X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jeon, Jeong Eun</creatorcontrib><creatorcontrib>Hong, Sang Jeen</creatorcontrib><creatorcontrib>Han, Seung-Soo</creatorcontrib><title>Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot</title><title>Electronics (Basel)</title><description>Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based on Fluke’s law. A stacking classifier was applied for fault prediction and severity classification, and logistic regression was used to identify fault components. Additionally, to analyze the frequency bands affecting each failed component and assess the severity of faults involving two mixed components, a hybrid explainable artificial intelligence (XAI) model combining Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) was employed to inform the user about the component causing the fault. This approach demonstrated a high prediction accuracy of 95%, and its integration into real-time monitoring systems is expected to reduce maintenance costs, decrease equipment downtime, and ultimately improve productivity.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Ball screws</subject><subject>Breakdowns</subject><subject>Clustering</subject><subject>Decision making</subject><subject>Downtime</subject><subject>End effectors</subject><subject>Explainable artificial intelligence</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Frequencies</subject><subject>Machine learning</subject><subject>Machinery</subject><subject>Maintenance and repair</subject><subject>Maintenance costs</subject><subject>Manufacturing</subject><subject>Production processes</subject><subject>Productivity</subject><subject>Real time</subject><subject>Robots</subject><subject>Semiconductor production equipment</subject><subject>Semiconductors</subject><subject>Vibration analysis</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUU1vEzEQXSEqUZX-Ai6WuMAhxR9Zr32MSguRglqhVnBbzdrjMJVrB9uRgF_Qn82GcODAzGGeRu_j8LruleAXSln-DiO6VnIiV4WScrkcxLPuVPLBLqy08vk_-EV3XusDn8cKZRQ_7Z7uG0X6BY1yYjmwT-C-UUK2QSiJ0pZB8uzqxy4CJZgislVpFMgRRLZODWOkLSaH7M3X1fotC7mwa9jHxm4LenJ_bA8W7wm2KVeqjBL7AgELuyuQ6gF8zlNuL7uTALHi-d971t1fX91dflxsbj6sL1ebhRNWt4WwBv0wKQFcQNBhkM7Z5QC-l94bb2SvDV-CGiYDg9dei4kPQWvhLFjtQJ11r4--u5K_77G28SHvS5ojRyWU4qIXvZlZF0fWFiKOlEJuBdy8Hh_J5YSB5v_KCCO51L2eBeoocCXXWjCMu0KPUH6Ogo-Hmsb_1KR-A0laiYw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Jeon, Jeong Eun</creator><creator>Hong, Sang Jeen</creator><creator>Han, Seung-Soo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0006-9932-3994</orcidid><orcidid>https://orcid.org/0009-0000-2868-5580</orcidid><orcidid>https://orcid.org/0000-0002-6576-690X</orcidid></search><sort><creationdate>20241101</creationdate><title>Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot</title><author>Jeon, Jeong Eun ; Hong, Sang Jeen ; Han, Seung-Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-198ed7b31a01af6f72cc947ad52dd8d8256804a37b8a7d6d61b07f661c9a96ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Ball screws</topic><topic>Breakdowns</topic><topic>Clustering</topic><topic>Decision making</topic><topic>Downtime</topic><topic>End effectors</topic><topic>Explainable artificial intelligence</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Frequencies</topic><topic>Machine learning</topic><topic>Machinery</topic><topic>Maintenance and repair</topic><topic>Maintenance costs</topic><topic>Manufacturing</topic><topic>Production processes</topic><topic>Productivity</topic><topic>Real time</topic><topic>Robots</topic><topic>Semiconductor production equipment</topic><topic>Semiconductors</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Jeong Eun</creatorcontrib><creatorcontrib>Hong, Sang Jeen</creatorcontrib><creatorcontrib>Han, Seung-Soo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Jeong Eun</au><au>Hong, Sang Jeen</au><au>Han, Seung-Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>13</volume><issue>22</issue><spage>4471</spage><pages>4471-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based on Fluke’s law. A stacking classifier was applied for fault prediction and severity classification, and logistic regression was used to identify fault components. Additionally, to analyze the frequency bands affecting each failed component and assess the severity of faults involving two mixed components, a hybrid explainable artificial intelligence (XAI) model combining Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) was employed to inform the user about the component causing the fault. This approach demonstrated a high prediction accuracy of 95%, and its integration into real-time monitoring systems is expected to reduce maintenance costs, decrease equipment downtime, and ultimately improve productivity.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13224471</doi><orcidid>https://orcid.org/0009-0006-9932-3994</orcidid><orcidid>https://orcid.org/0009-0000-2868-5580</orcidid><orcidid>https://orcid.org/0000-0002-6576-690X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-11, Vol.13 (22), p.4471 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3133015158 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Artificial intelligence Ball screws Breakdowns Clustering Decision making Downtime End effectors Explainable artificial intelligence Fault detection Fault diagnosis Frequencies Machine learning Machinery Maintenance and repair Maintenance costs Manufacturing Production processes Productivity Real time Robots Semiconductor production equipment Semiconductors Vibration analysis |
title | Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilization%20of%20Machine%20Learning%20and%20Explainable%20Artificial%20Intelligence%20(XAI)%20for%20Fault%20Prediction%20and%20Diagnosis%20in%20Wafer%20Transfer%20Robot&rft.jtitle=Electronics%20(Basel)&rft.au=Jeon,%20Jeong%20Eun&rft.date=2024-11-01&rft.volume=13&rft.issue=22&rft.spage=4471&rft.pages=4471-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13224471&rft_dat=%3Cgale_proqu%3EA818202656%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133015158&rft_id=info:pmid/&rft_galeid=A818202656&rfr_iscdi=true |