Utilization of Machine Learning and Explainable Artificial Intelligence (XAI) for Fault Prediction and Diagnosis in Wafer Transfer Robot

Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-11, Vol.13 (22), p.4471
Hauptverfasser: Jeon, Jeong Eun, Hong, Sang Jeen, Han, Seung-Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Faults in the wafer transfer robots (WTRs) used in semiconductor manufacturing processes can significantly affect productivity. This study defines high-risk components such as bearing motors, ball screws, timing belts, robot hands, and end effectors, and generates fault data for each component based on Fluke’s law. A stacking classifier was applied for fault prediction and severity classification, and logistic regression was used to identify fault components. Additionally, to analyze the frequency bands affecting each failed component and assess the severity of faults involving two mixed components, a hybrid explainable artificial intelligence (XAI) model combining Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME) was employed to inform the user about the component causing the fault. This approach demonstrated a high prediction accuracy of 95%, and its integration into real-time monitoring systems is expected to reduce maintenance costs, decrease equipment downtime, and ultimately improve productivity.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13224471