Hybrid-DC: A Hybrid Framework Using ResNet-50 and Vision Transformer for Steel Surface Defect Classification in the Rolling Process

This study introduces Hybrid-DC, a hybrid deep-learning model integrating ResNet-50 and Vision Transformer (ViT) for high-accuracy steel surface defect classification. Hybrid-DC leverages ResNet-50 for efficient feature extraction at both low and high levels and utilizes ViT’s global context learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-11, Vol.13 (22), p.4467
Hauptverfasser: Jeong, Minjun, Yang, Minyeol, Jeong, Jongpil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study introduces Hybrid-DC, a hybrid deep-learning model integrating ResNet-50 and Vision Transformer (ViT) for high-accuracy steel surface defect classification. Hybrid-DC leverages ResNet-50 for efficient feature extraction at both low and high levels and utilizes ViT’s global context learning to enhance classification precision. A unique hybrid attention layer and an attention fusion mechanism enable Hybrid-DC to adapt to the complex, variable patterns typical of steel surface defects. Experimental evaluations demonstrate that Hybrid-DC achieves substantial accuracy improvements and significantly reduced loss compared to traditional models like MobileNetV2 and ResNet, with a validation accuracy reaching 0.9944. The results suggest that this model, characterized by rapid convergence and stable learning, can be applied for real-time quality control in steel manufacturing and other high-precision industries, enhancing automated defect detection efficiency.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics13224467