Nature-Based Solution for Climate Change Adaptation: Coastal Habitats Restoration in Xiamen Bay, China

Nature-based solutions (NbSs) of biodiversity conservation and ecosystem restoration have been paid increasing attention as an essential approach to slow down climate change. However, to what degree an NbS approach will contribute to the combined effects of human intervention and climate change has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2024-11, Vol.15 (11), p.1844
Hauptverfasser: Yang, Suzhen, Fang, Qinhua, Zhang, Dian, Meilana, Lusita, Ikhumhen, Harrison Odion, Zhang, Xue, Jiang, Xiaoyan, Lin, Boding
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nature-based solutions (NbSs) of biodiversity conservation and ecosystem restoration have been paid increasing attention as an essential approach to slow down climate change. However, to what degree an NbS approach will contribute to the combined effects of human intervention and climate change has not been well studied. From a habitat quality perspective, we set four NbS scenarios to analyze whether the NbS—mangrove restoration in particular—will be enough for climate change in Xiamen Bay of Fujian Province, China. The habitat quality module of the InVEST model (InVEST-HQ) and the Sea Level Affecting Marshes Model (SLAMM) were used to simulate the spatial-temporal changes in habitat types and habitat quality. Results show that (1) rising sea levels will cause coastal squeeze effects, impacting habitat quality due to erosion and inundation in the study area; (2) mangrove restoration is an effective way to mitigate climate change effects and to increase habitat quality; and (3) further analysis of the effectiveness of mangrove restoration shows that the consideration of mangrove fragmentation effects and sea-use impacts are necessary. The findings in this study will enrich the international discussion of NbSs to climate change in coastal areas.
ISSN:1999-4907
1999-4907
DOI:10.3390/f15111844