Multimodal Framework for Long-Tailed Recognition

Long-tailed data distribution (i.e., minority classes occupy most of the data, while most classes have very few samples) is a common problem in image classification. In this paper, we propose a novel multimodal framework for long-tailed data recognition. In the first stage, long-tailed data are used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-11, Vol.14 (22), p.10572
Hauptverfasser: Chen, Jian, Zhao, Jianyin, Gu, Jiaojiao, Qin, Yufeng, Ji, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long-tailed data distribution (i.e., minority classes occupy most of the data, while most classes have very few samples) is a common problem in image classification. In this paper, we propose a novel multimodal framework for long-tailed data recognition. In the first stage, long-tailed data are used for visual-semantic contrastive learning to obtain good features, while in the second stage, class-balanced data are used for classifier training. The proposed framework leverages the advantages of multimodal models and mitigates the problem of class imbalance in long-tailed data recognition. Experimental results demonstrate that the proposed framework achieves competitive performance on the CIFAR-10-LT, CIFAR-100-LT, ImageNet-LT, and iNaturalist2018 datasets for image classification.
ISSN:2076-3417
2076-3417
DOI:10.3390/app142210572