On the Index of Depth Stability of Symbolic Powers of Cover Ideals of Graphs
Let G be a graph with n vertices and let S = K [ x 1 , ⋯ , x n ] be the polynomial ring in n variables over a field K . Assume that I ( G ) and J ( G ) denote the edge ideal and the cover ideal of G , respectively. We provide a combinatorial upper bound for the index of depth stability of symbolic p...
Gespeichert in:
Veröffentlicht in: | Acta mathematica vietnamica 2024-09, Vol.49 (3), p.367-376 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a graph with
n
vertices and let
S
=
K
[
x
1
,
⋯
,
x
n
]
be the polynomial ring in
n
variables over a field
K
. Assume that
I
(
G
) and
J
(
G
) denote the edge ideal and the cover ideal of
G
, respectively. We provide a combinatorial upper bound for the index of depth stability of symbolic powers of
J
(
G
). As a consequence, we compute the depth of symbolic powers of cover ideals of fully clique-whiskered graphs. Meanwhile, we determine a class of graphs
G
with the property that the Castelnuovo–Mumford regularity of
S
/
I
(
G
) is equal to the induced matching number of
G
. |
---|---|
ISSN: | 0251-4184 2315-4144 |
DOI: | 10.1007/s40306-024-00550-8 |