Experimental and theoretical insights into the structural, magnetic, and low-temperature magnetocaloric properties of RE2CoTiO6 (RE = Gd, Dy, and Er) double perovskite oxides
Herein, a systematic investigation on the structural and magnetic properties, especially the low-temperature magnetocaloric effect (MCE) and magnetocaloric performances, of RE2CoTiO6 (RE = Gd, Dy, and Er) oxides was conducted experimentally and theoretically. All the RE2CoTiO6 oxides crystallized in...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-11, Vol.12 (46), p.32396-32407 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Herein, a systematic investigation on the structural and magnetic properties, especially the low-temperature magnetocaloric effect (MCE) and magnetocaloric performances, of RE2CoTiO6 (RE = Gd, Dy, and Er) oxides was conducted experimentally and theoretically. All the RE2CoTiO6 oxides crystallized in the monoclinic B-site ordered (P121/n1 space group) double perovskite (DP)-type structure. The magnetic ground state was verified to be antiferromagnetic couplings for all the RE2CoTiO6 DP oxides by first-principles calculations and magnetization measurements. The magnetic transition temperature was determined to be 2.06, 6.05 and 5.99 K for Gd2CoTiO6, Dy2CoTiO6 and Er2CoTiO6, respectively. Large low-temperature MCEs and promising magnetocaloric performances were realized in these RE2CoTiO6 DP oxides. The deduced magnetocaloric parameters of the maximum magnetic entropy change, temperature-averaged magnetic entropy change, relative cooling power and refrigerant capacity of these RE2CoTiO6 DP oxides, especially for Gd2CoTiO6, were at a high level similar to or better than those of the updated magnetocaloric materials, making them of interest for low-temperature magnetic cooling. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/d4ta05172f |