Firearm detection using DETR with multiple self-coordinated neural networks
This paper presents a new strategy that uses multiple neural networks in conjunction with the DEtection TRansformer (DETR) network to detect firearms in surveillance images. The strategy developed in this work presents a methodology that promotes collaboration and self-coordination of networks in th...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2024-12, Vol.36 (35), p.22013-22022 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a new strategy that uses multiple neural networks in conjunction with the DEtection TRansformer (DETR) network to detect firearms in surveillance images. The strategy developed in this work presents a methodology that promotes collaboration and self-coordination of networks in the fully connected layers of DETR through the technique of multiple self-coordinating artificial neural networks (MANN), which does not require a coordinator. This self-coordination consists of training the networks one after the other and integrating their outputs without an extra element called a coordinator. The results indicate that the proposed network is highly effective, achieving high-level outcomes in firearm detection. The network’s high precision of 84% and its ability to perform classifications are noteworthy. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-024-10373-1 |