Uncorrectable-error-injection based reliable and secure quantum communication

Quantum networks aim to communicate distant quantum devices, such as quantum computers. In this context, a critical requirement is the secure and reliable transmission of arbitrary quantum states. Quantum teleportation is widely used to transmit arbitrary quantum states. However, it requires entangl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Sohn, IlKwon, Kim, Boseon, Bae, Kwangil, Song, Wooyeong, Lee, Chankyun, Jeong, Kabgyun, Lee, Wonhyuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum networks aim to communicate distant quantum devices, such as quantum computers. In this context, a critical requirement is the secure and reliable transmission of arbitrary quantum states. Quantum teleportation is widely used to transmit arbitrary quantum states. However, it requires entanglement swapping and purification to distribute entanglements over long distances, introducing significant overhead and complexity. These challenges limit its practicality for real-world quantum communication networks. To address this limitation, we propose a novel scheme for directly transmitting quantum states encoded using error-correction codes. The proposed scheme leverages the robustness of quantum error correction codes to ensure secure and reliable quantum communication. By encoding quantum states with error-correction codes and strategically injecting uncorrectable errors, we enhance the security and reliability of the transmission process. Our approach reduces the overhead associated with entanglement distribution and provides a high tolerance for transmission errors. This study presents an advancement in practical and scalable quantum communication networks.
ISSN:2331-8422