Gradient boosting MUST taggers for highly-boosted jets

The Mass Unspecific Supervised Tagging (MUST) method has proven to be successful in implementing generic jet taggers capable of discriminating various signals over a wide range of jet masses. We implement the MUST concept by using eXtreme Gradient Boosting (XGBoost) classifiers instead of neural net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2024-11, Vol.139 (11), p.1019, Article 1019
Hauptverfasser: Aguilar-Saavedra, J. A., Arganda, E., Joaquim, F. R., Sandá Seoane, R. M., Seabra, J. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Mass Unspecific Supervised Tagging (MUST) method has proven to be successful in implementing generic jet taggers capable of discriminating various signals over a wide range of jet masses. We implement the MUST concept by using eXtreme Gradient Boosting (XGBoost) classifiers instead of neural networks (NNs) as previously done. We build both fully-generic and specific multi-pronged taggers, to identify 2, 3, and/or 4-pronged signals from SM QCD background. We show that XGBoost-based taggers are not only easier to optimize and much faster than those based in NNs, but also show quite similar performance, even when testing with signals not used in training. Therefore, they provide a quite efficient alternative machine-learning implementation for generic jet taggers.
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/s13360-024-05781-0