Non-linear MRD codes from cones over exterior sets
By using the notion of a d -embedding Γ of a (canonical) subgeometry Σ and of exterior sets with respect to the h -secant variety Ω h ( A ) of a subset A , 0 ≤ h ≤ n - 1 , in the finite projective space PG ( n - 1 , q n ) , n ≥ 3 , in this article we construct a class of non-linear ( n , n , q ; ...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2024-12, Vol.92 (12), p.4195-4211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By using the notion of a
d
-embedding
Γ
of a (canonical) subgeometry
Σ
and of exterior sets with respect to the
h
-secant variety
Ω
h
(
A
)
of a subset
A
,
0
≤
h
≤
n
-
1
, in the finite projective space
PG
(
n
-
1
,
q
n
)
,
n
≥
3
, in this article we construct a class of non-linear (
n
,
n
,
q
;
d
)-MRD codes for any
2
≤
d
≤
n
-
1
. A code of this class
C
σ
,
T
, where
1
∈
T
⊆
F
q
∗
and
σ
is a generator of
Gal
(
F
q
n
|
F
q
)
, arises from a cone of
PG
(
n
-
1
,
q
n
)
with vertex an
(
n
-
d
-
2
)
-dimensional subspace over a maximum exterior set
E
with respect to
Ω
d
-
2
(
Γ
)
. We prove that the codes introduced in Cossidente et al (Des Codes Cryptogr 79:597–609, 2016), Donati and Durante (Des Codes Cryptogr 86:1175–1184, 2018), Durante and Siciliano (Electron J Comb, 2017) are suitable punctured ones of
C
σ
,
T
and we solve completely the inequivalence issue for this class showing that
C
σ
,
T
is neither equivalent nor adjointly equivalent to the non-linear MRD codes
C
n
,
k
,
σ
,
I
,
I
⊆
F
q
, obtained in Otal and Özbudak (Finite Fields Appl 50:293–303, 2018). |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-024-01492-w |