Non-linear MRD codes from cones over exterior sets

By using the notion of a d -embedding Γ of a (canonical) subgeometry Σ and of exterior sets with respect to the h -secant variety Ω h ( A ) of a subset A , 0 ≤ h ≤ n - 1 , in the finite projective space PG ( n - 1 , q n ) , n ≥ 3 , in this article we construct a class of non-linear ( n ,  n ,  q ; ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2024-12, Vol.92 (12), p.4195-4211
Hauptverfasser: Durante, Nicola, Grimaldi, Giovanni Giuseppe, Longobardi, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using the notion of a d -embedding Γ of a (canonical) subgeometry Σ and of exterior sets with respect to the h -secant variety Ω h ( A ) of a subset A , 0 ≤ h ≤ n - 1 , in the finite projective space PG ( n - 1 , q n ) , n ≥ 3 , in this article we construct a class of non-linear ( n ,  n ,  q ;  d )-MRD codes for any 2 ≤ d ≤ n - 1 . A code of this class C σ , T , where 1 ∈ T ⊆ F q ∗ and σ is a generator of Gal ( F q n | F q ) , arises from a cone of PG ( n - 1 , q n ) with vertex an ( n - d - 2 ) -dimensional subspace over a maximum exterior set E with respect to Ω d - 2 ( Γ ) . We prove that the codes introduced in Cossidente et al (Des Codes Cryptogr 79:597–609, 2016), Donati and Durante (Des Codes Cryptogr 86:1175–1184, 2018), Durante and Siciliano (Electron J Comb, 2017) are suitable punctured ones of C σ , T and we solve completely the inequivalence issue for this class showing that C σ , T is neither equivalent nor adjointly equivalent to the non-linear MRD codes C n , k , σ , I , I ⊆ F q , obtained in Otal and Özbudak (Finite Fields Appl 50:293–303, 2018).
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-024-01492-w