Effect of the cryogenic treatment on the electrocatalytic performance of the active self-supporting nanoporous Pd–Ag catalyst with high-index facets’ preferred orientation
Fuel cell is considered the best candidate power source because of its high energy conversion rate, large capacity, and zero emission. However, noble metal catalysts as a key core material have some problems, such as high cost and poor durability. Therefore, in this paper, the active self-supporting...
Gespeichert in:
Veröffentlicht in: | Ionics 2024-11, Vol.30 (11), p.7351-7364 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fuel cell is considered the best candidate power source because of its high energy conversion rate, large capacity, and zero emission. However, noble metal catalysts as a key core material have some problems, such as high cost and poor durability. Therefore, in this paper, the active self-supporting nanoporous Pd–Ag catalysts are successfully formed by cryogenic treatment and one-step dealloying treatment of Al-Pd–Ag ribbons. The surface of the catalyst ligaments shows a certain degree of preferred orientation for high-index facets (220) and (311). The results show that the activity and stability of the catalysts for methanol electrocatalytic oxidation are significantly improved under the synergistic effect of special configuration and promoter Ag. The electrocatalytic activity of the catalysts is about 9.7 and 15.2 times that of commercial Pt/C and commercial Pd/C catalysts, respectively. After 5000 s, the current density of the 1800 rpm-deep2 sample is 382.88 mA·mg
−1
, which is about 14.1 times and 39.9 times that of commercial Pt/C catalyst and commercial Pd/C catalyst. |
---|---|
ISSN: | 0947-7047 1862-0760 |
DOI: | 10.1007/s11581-024-05798-6 |