Wave dark matter and ultra-diffuse galaxies
ABSTRACT Dark matter (DM) as a Bose–Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of DM on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground state soliton core in every galaxy surrounded...
Gespeichert in:
Veröffentlicht in: | Mon.Not.Roy.Astron.Soc 2021-06, Vol.504 (2), p.2868-2876 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Dark matter (DM) as a Bose–Einstein condensate, such as the axionic scalar field particles of String Theory, can explain the coldness of DM on large scales. Pioneering simulations in this context predict a rich wave-like structure, with a ground state soliton core in every galaxy surrounded by a halo of excited states that interfere on the de Broglie scale. This de Broglie scale is largest for the low-mass galaxies as momentum is lower, providing a simple explanation for the wide cores of dwarf spheroidal galaxies. Here we extend these ‘wave dark matter’ (ψDM) predictions to the newly discovered class of ‘ultra-diffuse galaxies’ (UDG) that resemble dwarf spheroidal galaxies but with more extended stellar profiles. Currently, the best-studied example, ‘Dragon Fly 44’ (DF44), has a uniform velocity dispersion of ≃33 km s−1, extending to at least 3 kpc, that we show is reproduced by our ψDM simulations with a soliton radius of ≃0.5 kpc. In the ψDM context, we show that relatively flat dispersion profile of DF44 lies between massive galaxies with compact dense solitons, as may be present in the Milky Way on a scale of 100 pc and lower mass galaxies where the velocity dispersion declines centrally within a wide, low-density soliton, like Antlia II, of radius 3 kpc. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab855 |