A Novel Mutation in the LHX3 Gene is Responsible for Combined Pituitary Hormone Deficiency, Hearing Impairment, and Vertebral Malformations
Context: The LHX3 LIM-homeodomain transcription factor gene, found in both man and mouse, is required for development of the pituitary and motor neurons and is also expressed in the auditory system. Objective: The objective of this study was to determine the cause of, and further explore, the phenot...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2009-02, Vol.150 (2), p.1069-1069 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Context: The LHX3 LIM-homeodomain transcription factor gene, found in both man and mouse, is required for development of the pituitary and motor neurons and is also expressed in the auditory system.
Objective: The objective of this study was to determine the cause of, and further explore, the phenotype in six patients (aged 6 months to 22 years) with combined pituitary hormone deficiency (CPHD), restricted neck rotation, scoliosis and congenital hearing impairment. Three of the patients also have mild autistic-like behaviour.
Design: As patients with CPHD and restricted neck rotation have previously been shown to have mutations in the LHX3 gene, a candidate gene approach was applied and the gene was sequenced. Neck anatomy was explored by computed tomography and magnetic resonance imaging, including three-dimensional reformatting.
Results: A novel, recessive, splice-acceptor site mutation was found. The predicted protein encoded by the mutated gene lacks the homeodomain and carboxyl terminus of the normal, functional protein. Genealogical studies revealed a common gene source for all six families dating back to the seventeenth century. Anatomical abnormalities in the occipito–atlanto–axial joints in combination with a basilar impression of the dens axis were found in all patients assessed.
Conclusions: This study extends both the mutations known to be responsible for LHX3-associated syndromes and their possible phenotypic consequences. Previously reported traits include CPHD and restricted neck rotation; patients examined in the present study also show a severe hearing defect. Additionally the existence of cervical vertebral malformations are revealed, responsible for the rigid neck and the development of scoliosis. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/endo.150.2.9998 |