Bexarotene Induces Dyslipidemia by Increased Very Low-Density Lipoprotein Production and Cholesteryl Ester Transfer Protein-Mediated Reduction of High-Density Lipoprotein

A common dose-limiting side effect of treatment with the retinoid X receptor agonist bexarotene is dyslipidemia. We evaluated the effects of bexarotene on plasma lipid metabolism in patients with metastatic differentiated thyroid carcinoma and investigated the underlying mechanism(s) in apolipoprote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2009-05, Vol.150 (5), p.2368-2375
Hauptverfasser: de Vries-van der Weij, Jitske, de Haan, Willeke, Hu, Lihui, Kuif, Maarten, Oei, H. Ling D. W, van der Hoorn, José W. A, Havekes, Louis M, Princen, Hans M. G, Romijn, Johannes A, Smit, Johannes W. A, Rensen, Patrick C. N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2375
container_issue 5
container_start_page 2368
container_title Endocrinology (Philadelphia)
container_volume 150
creator de Vries-van der Weij, Jitske
de Haan, Willeke
Hu, Lihui
Kuif, Maarten
Oei, H. Ling D. W
van der Hoorn, José W. A
Havekes, Louis M
Princen, Hans M. G
Romijn, Johannes A
Smit, Johannes W. A
Rensen, Patrick C. N
description A common dose-limiting side effect of treatment with the retinoid X receptor agonist bexarotene is dyslipidemia. We evaluated the effects of bexarotene on plasma lipid metabolism in patients with metastatic differentiated thyroid carcinoma and investigated the underlying mechanism(s) in apolipoprotein (APO) E*3-Leiden mice without (E3L) and with human cholesteryl ester transfer protein (CETP; E3L.CETP). To this end, 10 patients with metastatic differentiated thyroid carcinoma were treated with bexarotene (300 mg/d) for 6 wk. Bexarotene increased plasma triglyceride (TG; +150%), primarily associated with very low-density lipoprotein (VLDL), and raised plasma total cholesterol (+50%). However, whereas bexarotene increased VLDL-cholesterol (C) and low-density lipoprotein (LDL)-C (+63%), it decreased high-density lipoprotein (HDL)-C (−30%) and tended to decrease apoAI (−18%) concomitant with an increase in endogenous CETP activity (+44%). To evaluate the cause of the bexarotene-induced hypertriglyceridemia and the role of CETP in the bexarotene-induced shift in cholesterol distribution, E3L and E3L.CETP mice were treated with bexarotene through dietary supplementation [0.03% (wt/wt)]. Bexarotene increased VLDL-associated TG in both E3L (+47%) and E3L.CETP (+29%) mice by increasing VLDL-TG production (+68%). Bexarotene did not affect the total cholesterol levels or distribution in E3L mice but increased VLDL-C (+11%) and decreased HDL-C (−56%) as well as apoAI (−31%) in E3L.CETP mice, concomitant with increased endogenous CETP activity (+41%). This increased CETP activity by bexarotene-treatment is likely due to the increase in VLDL-TG, a CETP substrate that drives CETP activity. In conclusion, bexarotene causes combined dyslipidemia as reflected by increased TG, VLDL-C, and LDL-C and decreased HDL-C, which is the result of an increased VLDL-TG production that causes an increase of the endogenous CETP activity. Bexarotene causes hypertriglyceridemia by increasing the VLDL-TG production rate, and increases VLDL-C and decreases HDL-C through increasing the CETP-dependent transfer of cholesterol from HDL to VLDL, as a consequence of an increased VLDL-TG pool.
doi_str_mv 10.1210/en.2008-1540
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130597527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2008-1540</oup_id><sourcerecordid>3130597527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-e3b29f8fa42842a7ec756997fdf5aa877018b844f431596eb39a69844a54b4793</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxa2qqGy33HquLPXABS927MTxsV3-SouKEHCNnGRcjHbt1E4E-5X6KXGURVzgNOPR770Z6yH0ndEFyxg9BrfIKC0JywX9hGZMiZxIJulnNKOUcSKzTO6jrzE-pqcQgn9B-0wxIQtZzND_3_Csg-_BAb507dBAxCfbuLadbWFjNa63ad4E0BFafA9hi1f-iZyAi7ZPve18N8qtw9fBJ31vvcPatXj54NcQ-6RY49Ox4tugXTSpuZ4U5Apaq_vkewOvSm_whf378N6Cb2jP6HWEg12do7uz09vlBVn9Ob9c_lqRRijZE-B1pkxptMhKkWkJjcwLpaRpTa51KSVlZV0KYQRnuSqg5koXKg10LmohFZ-jn5Nv2vtvSF-oHv0QXFpZccZprmSeyUQdTVQTfIwBTNUFu9FhWzFajcFU4KoxmGoMJuE_dqZDvYH2Dd4lkYDDCfBD95EV2VnxiQTX-iZYB12AGN-ufPeAF_UTqNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130597527</pqid></control><display><type>article</type><title>Bexarotene Induces Dyslipidemia by Increased Very Low-Density Lipoprotein Production and Cholesteryl Ester Transfer Protein-Mediated Reduction of High-Density Lipoprotein</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>de Vries-van der Weij, Jitske ; de Haan, Willeke ; Hu, Lihui ; Kuif, Maarten ; Oei, H. Ling D. W ; van der Hoorn, José W. A ; Havekes, Louis M ; Princen, Hans M. G ; Romijn, Johannes A ; Smit, Johannes W. A ; Rensen, Patrick C. N</creator><creatorcontrib>de Vries-van der Weij, Jitske ; de Haan, Willeke ; Hu, Lihui ; Kuif, Maarten ; Oei, H. Ling D. W ; van der Hoorn, José W. A ; Havekes, Louis M ; Princen, Hans M. G ; Romijn, Johannes A ; Smit, Johannes W. A ; Rensen, Patrick C. N</creatorcontrib><description>A common dose-limiting side effect of treatment with the retinoid X receptor agonist bexarotene is dyslipidemia. We evaluated the effects of bexarotene on plasma lipid metabolism in patients with metastatic differentiated thyroid carcinoma and investigated the underlying mechanism(s) in apolipoprotein (APO) E*3-Leiden mice without (E3L) and with human cholesteryl ester transfer protein (CETP; E3L.CETP). To this end, 10 patients with metastatic differentiated thyroid carcinoma were treated with bexarotene (300 mg/d) for 6 wk. Bexarotene increased plasma triglyceride (TG; +150%), primarily associated with very low-density lipoprotein (VLDL), and raised plasma total cholesterol (+50%). However, whereas bexarotene increased VLDL-cholesterol (C) and low-density lipoprotein (LDL)-C (+63%), it decreased high-density lipoprotein (HDL)-C (−30%) and tended to decrease apoAI (−18%) concomitant with an increase in endogenous CETP activity (+44%). To evaluate the cause of the bexarotene-induced hypertriglyceridemia and the role of CETP in the bexarotene-induced shift in cholesterol distribution, E3L and E3L.CETP mice were treated with bexarotene through dietary supplementation [0.03% (wt/wt)]. Bexarotene increased VLDL-associated TG in both E3L (+47%) and E3L.CETP (+29%) mice by increasing VLDL-TG production (+68%). Bexarotene did not affect the total cholesterol levels or distribution in E3L mice but increased VLDL-C (+11%) and decreased HDL-C (−56%) as well as apoAI (−31%) in E3L.CETP mice, concomitant with increased endogenous CETP activity (+41%). This increased CETP activity by bexarotene-treatment is likely due to the increase in VLDL-TG, a CETP substrate that drives CETP activity. In conclusion, bexarotene causes combined dyslipidemia as reflected by increased TG, VLDL-C, and LDL-C and decreased HDL-C, which is the result of an increased VLDL-TG production that causes an increase of the endogenous CETP activity. Bexarotene causes hypertriglyceridemia by increasing the VLDL-TG production rate, and increases VLDL-C and decreases HDL-C through increasing the CETP-dependent transfer of cholesterol from HDL to VLDL, as a consequence of an increased VLDL-TG pool.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2008-1540</identifier><identifier>PMID: 19147676</identifier><language>eng</language><publisher>United States: Endocrine Society</publisher><subject>Animals ; Anticarcinogenic Agents - adverse effects ; Anticarcinogenic Agents - pharmacology ; Apolipoprotein E3 - genetics ; Apolipoproteins ; Cholesterol ; Cholesterol Ester Transfer Proteins - genetics ; Cholesterol Ester Transfer Proteins - metabolism ; Cholesterol Ester Transfer Proteins - physiology ; Cholesteryl ester transfer protein ; Dietary supplements ; Drug Evaluation, Preclinical ; Dyslipidemia ; Dyslipidemias - chemically induced ; Dyslipidemias - metabolism ; High density ; High density lipoprotein ; Humans ; Hypertriglyceridemia ; Lipid metabolism ; Lipids ; Lipoproteins ; Lipoproteins (very low density) ; Lipoproteins, HDL - metabolism ; Lipoproteins, VLDL - metabolism ; Low density lipoprotein ; Male ; Metabolic disorders ; Metastases ; Metastasis ; Mice ; Mice, Transgenic ; Protein turnover ; Proteins ; Receptor density ; Tetrahydronaphthalenes - adverse effects ; Tetrahydronaphthalenes - pharmacology ; Thyroid ; Thyroid cancer ; Thyroid carcinoma ; Triglycerides ; Triglycerides - blood ; Triglycerides - metabolism</subject><ispartof>Endocrinology (Philadelphia), 2009-05, Vol.150 (5), p.2368-2375</ispartof><rights>Copyright © 2009 by The Endocrine Society 2009</rights><rights>Copyright © 2009 by The Endocrine Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-e3b29f8fa42842a7ec756997fdf5aa877018b844f431596eb39a69844a54b4793</citedby><cites>FETCH-LOGICAL-c497t-e3b29f8fa42842a7ec756997fdf5aa877018b844f431596eb39a69844a54b4793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19147676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Vries-van der Weij, Jitske</creatorcontrib><creatorcontrib>de Haan, Willeke</creatorcontrib><creatorcontrib>Hu, Lihui</creatorcontrib><creatorcontrib>Kuif, Maarten</creatorcontrib><creatorcontrib>Oei, H. Ling D. W</creatorcontrib><creatorcontrib>van der Hoorn, José W. A</creatorcontrib><creatorcontrib>Havekes, Louis M</creatorcontrib><creatorcontrib>Princen, Hans M. G</creatorcontrib><creatorcontrib>Romijn, Johannes A</creatorcontrib><creatorcontrib>Smit, Johannes W. A</creatorcontrib><creatorcontrib>Rensen, Patrick C. N</creatorcontrib><title>Bexarotene Induces Dyslipidemia by Increased Very Low-Density Lipoprotein Production and Cholesteryl Ester Transfer Protein-Mediated Reduction of High-Density Lipoprotein</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>A common dose-limiting side effect of treatment with the retinoid X receptor agonist bexarotene is dyslipidemia. We evaluated the effects of bexarotene on plasma lipid metabolism in patients with metastatic differentiated thyroid carcinoma and investigated the underlying mechanism(s) in apolipoprotein (APO) E*3-Leiden mice without (E3L) and with human cholesteryl ester transfer protein (CETP; E3L.CETP). To this end, 10 patients with metastatic differentiated thyroid carcinoma were treated with bexarotene (300 mg/d) for 6 wk. Bexarotene increased plasma triglyceride (TG; +150%), primarily associated with very low-density lipoprotein (VLDL), and raised plasma total cholesterol (+50%). However, whereas bexarotene increased VLDL-cholesterol (C) and low-density lipoprotein (LDL)-C (+63%), it decreased high-density lipoprotein (HDL)-C (−30%) and tended to decrease apoAI (−18%) concomitant with an increase in endogenous CETP activity (+44%). To evaluate the cause of the bexarotene-induced hypertriglyceridemia and the role of CETP in the bexarotene-induced shift in cholesterol distribution, E3L and E3L.CETP mice were treated with bexarotene through dietary supplementation [0.03% (wt/wt)]. Bexarotene increased VLDL-associated TG in both E3L (+47%) and E3L.CETP (+29%) mice by increasing VLDL-TG production (+68%). Bexarotene did not affect the total cholesterol levels or distribution in E3L mice but increased VLDL-C (+11%) and decreased HDL-C (−56%) as well as apoAI (−31%) in E3L.CETP mice, concomitant with increased endogenous CETP activity (+41%). This increased CETP activity by bexarotene-treatment is likely due to the increase in VLDL-TG, a CETP substrate that drives CETP activity. In conclusion, bexarotene causes combined dyslipidemia as reflected by increased TG, VLDL-C, and LDL-C and decreased HDL-C, which is the result of an increased VLDL-TG production that causes an increase of the endogenous CETP activity. Bexarotene causes hypertriglyceridemia by increasing the VLDL-TG production rate, and increases VLDL-C and decreases HDL-C through increasing the CETP-dependent transfer of cholesterol from HDL to VLDL, as a consequence of an increased VLDL-TG pool.</description><subject>Animals</subject><subject>Anticarcinogenic Agents - adverse effects</subject><subject>Anticarcinogenic Agents - pharmacology</subject><subject>Apolipoprotein E3 - genetics</subject><subject>Apolipoproteins</subject><subject>Cholesterol</subject><subject>Cholesterol Ester Transfer Proteins - genetics</subject><subject>Cholesterol Ester Transfer Proteins - metabolism</subject><subject>Cholesterol Ester Transfer Proteins - physiology</subject><subject>Cholesteryl ester transfer protein</subject><subject>Dietary supplements</subject><subject>Drug Evaluation, Preclinical</subject><subject>Dyslipidemia</subject><subject>Dyslipidemias - chemically induced</subject><subject>Dyslipidemias - metabolism</subject><subject>High density</subject><subject>High density lipoprotein</subject><subject>Humans</subject><subject>Hypertriglyceridemia</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Lipoproteins (very low density)</subject><subject>Lipoproteins, HDL - metabolism</subject><subject>Lipoproteins, VLDL - metabolism</subject><subject>Low density lipoprotein</subject><subject>Male</subject><subject>Metabolic disorders</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Receptor density</subject><subject>Tetrahydronaphthalenes - adverse effects</subject><subject>Tetrahydronaphthalenes - pharmacology</subject><subject>Thyroid</subject><subject>Thyroid cancer</subject><subject>Thyroid carcinoma</subject><subject>Triglycerides</subject><subject>Triglycerides - blood</subject><subject>Triglycerides - metabolism</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9P3DAQxa2qqGy33HquLPXABS927MTxsV3-SouKEHCNnGRcjHbt1E4E-5X6KXGURVzgNOPR770Z6yH0ndEFyxg9BrfIKC0JywX9hGZMiZxIJulnNKOUcSKzTO6jrzE-pqcQgn9B-0wxIQtZzND_3_Csg-_BAb507dBAxCfbuLadbWFjNa63ad4E0BFafA9hi1f-iZyAi7ZPve18N8qtw9fBJ31vvcPatXj54NcQ-6RY49Ox4tugXTSpuZ4U5Apaq_vkewOvSm_whf378N6Cb2jP6HWEg12do7uz09vlBVn9Ob9c_lqRRijZE-B1pkxptMhKkWkJjcwLpaRpTa51KSVlZV0KYQRnuSqg5koXKg10LmohFZ-jn5Nv2vtvSF-oHv0QXFpZccZprmSeyUQdTVQTfIwBTNUFu9FhWzFajcFU4KoxmGoMJuE_dqZDvYH2Dd4lkYDDCfBD95EV2VnxiQTX-iZYB12AGN-ufPeAF_UTqNc</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>de Vries-van der Weij, Jitske</creator><creator>de Haan, Willeke</creator><creator>Hu, Lihui</creator><creator>Kuif, Maarten</creator><creator>Oei, H. Ling D. W</creator><creator>van der Hoorn, José W. A</creator><creator>Havekes, Louis M</creator><creator>Princen, Hans M. G</creator><creator>Romijn, Johannes A</creator><creator>Smit, Johannes W. A</creator><creator>Rensen, Patrick C. N</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>20090501</creationdate><title>Bexarotene Induces Dyslipidemia by Increased Very Low-Density Lipoprotein Production and Cholesteryl Ester Transfer Protein-Mediated Reduction of High-Density Lipoprotein</title><author>de Vries-van der Weij, Jitske ; de Haan, Willeke ; Hu, Lihui ; Kuif, Maarten ; Oei, H. Ling D. W ; van der Hoorn, José W. A ; Havekes, Louis M ; Princen, Hans M. G ; Romijn, Johannes A ; Smit, Johannes W. A ; Rensen, Patrick C. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-e3b29f8fa42842a7ec756997fdf5aa877018b844f431596eb39a69844a54b4793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Anticarcinogenic Agents - adverse effects</topic><topic>Anticarcinogenic Agents - pharmacology</topic><topic>Apolipoprotein E3 - genetics</topic><topic>Apolipoproteins</topic><topic>Cholesterol</topic><topic>Cholesterol Ester Transfer Proteins - genetics</topic><topic>Cholesterol Ester Transfer Proteins - metabolism</topic><topic>Cholesterol Ester Transfer Proteins - physiology</topic><topic>Cholesteryl ester transfer protein</topic><topic>Dietary supplements</topic><topic>Drug Evaluation, Preclinical</topic><topic>Dyslipidemia</topic><topic>Dyslipidemias - chemically induced</topic><topic>Dyslipidemias - metabolism</topic><topic>High density</topic><topic>High density lipoprotein</topic><topic>Humans</topic><topic>Hypertriglyceridemia</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Lipoproteins (very low density)</topic><topic>Lipoproteins, HDL - metabolism</topic><topic>Lipoproteins, VLDL - metabolism</topic><topic>Low density lipoprotein</topic><topic>Male</topic><topic>Metabolic disorders</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Receptor density</topic><topic>Tetrahydronaphthalenes - adverse effects</topic><topic>Tetrahydronaphthalenes - pharmacology</topic><topic>Thyroid</topic><topic>Thyroid cancer</topic><topic>Thyroid carcinoma</topic><topic>Triglycerides</topic><topic>Triglycerides - blood</topic><topic>Triglycerides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vries-van der Weij, Jitske</creatorcontrib><creatorcontrib>de Haan, Willeke</creatorcontrib><creatorcontrib>Hu, Lihui</creatorcontrib><creatorcontrib>Kuif, Maarten</creatorcontrib><creatorcontrib>Oei, H. Ling D. W</creatorcontrib><creatorcontrib>van der Hoorn, José W. A</creatorcontrib><creatorcontrib>Havekes, Louis M</creatorcontrib><creatorcontrib>Princen, Hans M. G</creatorcontrib><creatorcontrib>Romijn, Johannes A</creatorcontrib><creatorcontrib>Smit, Johannes W. A</creatorcontrib><creatorcontrib>Rensen, Patrick C. N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vries-van der Weij, Jitske</au><au>de Haan, Willeke</au><au>Hu, Lihui</au><au>Kuif, Maarten</au><au>Oei, H. Ling D. W</au><au>van der Hoorn, José W. A</au><au>Havekes, Louis M</au><au>Princen, Hans M. G</au><au>Romijn, Johannes A</au><au>Smit, Johannes W. A</au><au>Rensen, Patrick C. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bexarotene Induces Dyslipidemia by Increased Very Low-Density Lipoprotein Production and Cholesteryl Ester Transfer Protein-Mediated Reduction of High-Density Lipoprotein</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2009-05-01</date><risdate>2009</risdate><volume>150</volume><issue>5</issue><spage>2368</spage><epage>2375</epage><pages>2368-2375</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><abstract>A common dose-limiting side effect of treatment with the retinoid X receptor agonist bexarotene is dyslipidemia. We evaluated the effects of bexarotene on plasma lipid metabolism in patients with metastatic differentiated thyroid carcinoma and investigated the underlying mechanism(s) in apolipoprotein (APO) E*3-Leiden mice without (E3L) and with human cholesteryl ester transfer protein (CETP; E3L.CETP). To this end, 10 patients with metastatic differentiated thyroid carcinoma were treated with bexarotene (300 mg/d) for 6 wk. Bexarotene increased plasma triglyceride (TG; +150%), primarily associated with very low-density lipoprotein (VLDL), and raised plasma total cholesterol (+50%). However, whereas bexarotene increased VLDL-cholesterol (C) and low-density lipoprotein (LDL)-C (+63%), it decreased high-density lipoprotein (HDL)-C (−30%) and tended to decrease apoAI (−18%) concomitant with an increase in endogenous CETP activity (+44%). To evaluate the cause of the bexarotene-induced hypertriglyceridemia and the role of CETP in the bexarotene-induced shift in cholesterol distribution, E3L and E3L.CETP mice were treated with bexarotene through dietary supplementation [0.03% (wt/wt)]. Bexarotene increased VLDL-associated TG in both E3L (+47%) and E3L.CETP (+29%) mice by increasing VLDL-TG production (+68%). Bexarotene did not affect the total cholesterol levels or distribution in E3L mice but increased VLDL-C (+11%) and decreased HDL-C (−56%) as well as apoAI (−31%) in E3L.CETP mice, concomitant with increased endogenous CETP activity (+41%). This increased CETP activity by bexarotene-treatment is likely due to the increase in VLDL-TG, a CETP substrate that drives CETP activity. In conclusion, bexarotene causes combined dyslipidemia as reflected by increased TG, VLDL-C, and LDL-C and decreased HDL-C, which is the result of an increased VLDL-TG production that causes an increase of the endogenous CETP activity. Bexarotene causes hypertriglyceridemia by increasing the VLDL-TG production rate, and increases VLDL-C and decreases HDL-C through increasing the CETP-dependent transfer of cholesterol from HDL to VLDL, as a consequence of an increased VLDL-TG pool.</abstract><cop>United States</cop><pub>Endocrine Society</pub><pmid>19147676</pmid><doi>10.1210/en.2008-1540</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-7227
ispartof Endocrinology (Philadelphia), 2009-05, Vol.150 (5), p.2368-2375
issn 0013-7227
1945-7170
language eng
recordid cdi_proquest_journals_3130597527
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Anticarcinogenic Agents - adverse effects
Anticarcinogenic Agents - pharmacology
Apolipoprotein E3 - genetics
Apolipoproteins
Cholesterol
Cholesterol Ester Transfer Proteins - genetics
Cholesterol Ester Transfer Proteins - metabolism
Cholesterol Ester Transfer Proteins - physiology
Cholesteryl ester transfer protein
Dietary supplements
Drug Evaluation, Preclinical
Dyslipidemia
Dyslipidemias - chemically induced
Dyslipidemias - metabolism
High density
High density lipoprotein
Humans
Hypertriglyceridemia
Lipid metabolism
Lipids
Lipoproteins
Lipoproteins (very low density)
Lipoproteins, HDL - metabolism
Lipoproteins, VLDL - metabolism
Low density lipoprotein
Male
Metabolic disorders
Metastases
Metastasis
Mice
Mice, Transgenic
Protein turnover
Proteins
Receptor density
Tetrahydronaphthalenes - adverse effects
Tetrahydronaphthalenes - pharmacology
Thyroid
Thyroid cancer
Thyroid carcinoma
Triglycerides
Triglycerides - blood
Triglycerides - metabolism
title Bexarotene Induces Dyslipidemia by Increased Very Low-Density Lipoprotein Production and Cholesteryl Ester Transfer Protein-Mediated Reduction of High-Density Lipoprotein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bexarotene%20Induces%20Dyslipidemia%20by%20Increased%20Very%20Low-Density%20Lipoprotein%20Production%20and%20Cholesteryl%20Ester%20Transfer%20Protein-Mediated%20Reduction%20of%20High-Density%20Lipoprotein&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=de%20Vries-van%20der%20Weij,%20Jitske&rft.date=2009-05-01&rft.volume=150&rft.issue=5&rft.spage=2368&rft.epage=2375&rft.pages=2368-2375&rft.issn=0013-7227&rft.eissn=1945-7170&rft_id=info:doi/10.1210/en.2008-1540&rft_dat=%3Cproquest_cross%3E3130597527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130597527&rft_id=info:pmid/19147676&rft_oup_id=10.1210/en.2008-1540&rfr_iscdi=true