Bexarotene Induces Dyslipidemia by Increased Very Low-Density Lipoprotein Production and Cholesteryl Ester Transfer Protein-Mediated Reduction of High-Density Lipoprotein
A common dose-limiting side effect of treatment with the retinoid X receptor agonist bexarotene is dyslipidemia. We evaluated the effects of bexarotene on plasma lipid metabolism in patients with metastatic differentiated thyroid carcinoma and investigated the underlying mechanism(s) in apolipoprote...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2009-05, Vol.150 (5), p.2368-2375 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A common dose-limiting side effect of treatment with the retinoid X receptor agonist bexarotene is dyslipidemia. We evaluated the effects of bexarotene on plasma lipid metabolism in patients with metastatic differentiated thyroid carcinoma and investigated the underlying mechanism(s) in apolipoprotein (APO) E*3-Leiden mice without (E3L) and with human cholesteryl ester transfer protein (CETP; E3L.CETP). To this end, 10 patients with metastatic differentiated thyroid carcinoma were treated with bexarotene (300 mg/d) for 6 wk. Bexarotene increased plasma triglyceride (TG; +150%), primarily associated with very low-density lipoprotein (VLDL), and raised plasma total cholesterol (+50%). However, whereas bexarotene increased VLDL-cholesterol (C) and low-density lipoprotein (LDL)-C (+63%), it decreased high-density lipoprotein (HDL)-C (−30%) and tended to decrease apoAI (−18%) concomitant with an increase in endogenous CETP activity (+44%). To evaluate the cause of the bexarotene-induced hypertriglyceridemia and the role of CETP in the bexarotene-induced shift in cholesterol distribution, E3L and E3L.CETP mice were treated with bexarotene through dietary supplementation [0.03% (wt/wt)]. Bexarotene increased VLDL-associated TG in both E3L (+47%) and E3L.CETP (+29%) mice by increasing VLDL-TG production (+68%). Bexarotene did not affect the total cholesterol levels or distribution in E3L mice but increased VLDL-C (+11%) and decreased HDL-C (−56%) as well as apoAI (−31%) in E3L.CETP mice, concomitant with increased endogenous CETP activity (+41%). This increased CETP activity by bexarotene-treatment is likely due to the increase in VLDL-TG, a CETP substrate that drives CETP activity. In conclusion, bexarotene causes combined dyslipidemia as reflected by increased TG, VLDL-C, and LDL-C and decreased HDL-C, which is the result of an increased VLDL-TG production that causes an increase of the endogenous CETP activity.
Bexarotene causes hypertriglyceridemia by increasing the VLDL-TG production rate, and increases VLDL-C and decreases HDL-C through increasing the CETP-dependent transfer of cholesterol from HDL to VLDL, as a consequence of an increased VLDL-TG pool. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/en.2008-1540 |