Increased Hepatic Peroxisome Proliferator-Activated Receptor-γ Coactivator-1 Gene Expression in a Rat Model of Intrauterine Growth Retardation and Subsequent Insulin Resistance
Uteroplacental insufficiency and subsequent intrauterine growth retardation (IUGR) increase the risk of type 2 diabetes in humans and rats. Unsuppressed endogenous hepatic glucose production is a common component of the insulin resistance associated with type 2 diabetes. Peroxisome proliferator-acti...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2002-07, Vol.143 (7), p.2486-2490 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uteroplacental insufficiency and subsequent intrauterine growth retardation (IUGR) increase the risk of type 2 diabetes in humans and rats. Unsuppressed endogenous hepatic glucose production is a common component of the insulin resistance associated with type 2 diabetes. Peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) mediates hepatic glucose production by controlling mRNA levels of glucose-6-phosphatase (G-6-Pase), phosphoenolpyruvate carboxykinase (PEPCK), and fructose-1,6-bisphosphatase (FBPase). We therefore hypothesized that gene expression of PGC-1 would be increased in juvenile IUGR rat livers, and this increase would directly correlate with hepatic mRNA levels of PEPCK, G-6-Pase, and FBPase, but not glucokinase. We found that IUGR hepatic PGC-1 protein levels were increased to 230 ± 32% and 310 ± 47% of control values at d 0 and d 21 of life, respectively. Similarly, IUGR hepatic PGC-1 mRNA levels were significantly elevated at both ages. Concurrent with the increased PGC-1 gene expression, IUGR hepatic mRNA levels of G-6-Pase, PEPCK, and FBPase were also significantly increased, whereas glucokinase mRNA levels were significantly decreased. These data suggest that increased PGC-1 expression and subsequent hepatic glucose production contribute to the insulin resistance observed in the IUGR juvenile rat. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/endo.143.7.8898 |