Regulator of G Protein Signaling 4 Suppresses Basal and Thyrotropin Releasing-Hormone (TRH)-Stimulated Signaling by Two Mouse TRH Receptors, TRH-R1 and TRH-R2
Abstract We cloned the mouse TRH receptor type 2 (mTRH-R2) gene, which is 92% identical with rat TRH-R2 and 50% identical with mTRH-R1 at the amino acid level, and identified an intron within the coding sequence that is not present in the TRH-R1 gene structure. Similar to its rat homolog, mTRH-R2 bi...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2001-03, Vol.142 (3), p.1188-1194 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We cloned the mouse TRH receptor type 2 (mTRH-R2) gene, which is 92% identical with rat TRH-R2 and 50% identical with mTRH-R1 at the amino acid level, and identified an intron within the coding sequence that is not present in the TRH-R1 gene structure. Similar to its rat homolog, mTRH-R2 binds TRH with an affinity indistinguishable from mTRH-R1, signals via the phosphoinositide pathway like mTRH-R1, but exhibits a higher basal signaling activity than mTRH-R1. We found that regulator of G protein signaling 4 (RGS4), which differentially inhibits signaling by other receptors that couple to Gq, inhibits TRH-stimulated signaling via mTRH-R1 and mTRH-R2 to similar extents. In contrast, other RGS proteins including RGS7, RGS9, and GAIP had no effect on signaling by mTRH-R1 or mTRH-R2 demonstrating the specificity of RGS4 action. Interestingly, RGS4 markedly inhibited basal signaling by mTRH-R2. Inhibition of basal signaling of mTRH-R2 by RGS4 suggests that modulation of agonist-independent signaling may be an important mechanism of regulation of G protein-coupled receptor activity under normal physiologic circumstances. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/endo.142.3.8019 |