A Histone Deacetylase Inhibitor Potentiates Estrogen Receptor Activation of a Stably Integrated Vitellogenin Promoter in HepG2 Cells
Abstract To compare the role of histone deactylation in estrogen activation of a transiently transfected vitellogenin (VIT) promoter and an integrated VIT promoter in the same cells, we produced three HepG2, human hepatoma, cell lines (HepG2ERV cells) stably expressing human estrogen receptor α (hER...
Gespeichert in:
Veröffentlicht in: | Endocrinology (Philadelphia) 2000-07, Vol.141 (7), p.2361-2369 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
To compare the role of histone deactylation in estrogen activation of a transiently transfected vitellogenin (VIT) promoter and an integrated VIT promoter in the same cells, we produced three HepG2, human hepatoma, cell lines (HepG2ERV cells) stably expressing human estrogen receptor α (hERα) and containing an integrated VIT promoter-chloramphenicol acetyltransferase (VIT-CAT) reporter gene. The three ER-positive HepG2ERV cell lines and wild-type, ER-negative, HepG2 cells cotransfected with cytomegalovirus-hERα exhibited similar MOX-dependent inductions of 20- to 50-fold with a transiently transfected VIT-luciferase reporter and 15- to 50-fold with a transfected 4-estrogen response element-TATA-luciferase reporter gene. The histone deacetylase inhibitor, trichostatin A, did not enhance MOX induction of the transiently transfected VIT promoter in the HepG2ERV cells. In contrast, trichostatin A dramatically potentiated MOX induction of the stably integrated VIT-CAT reporter gene, resulting in MOX-ER-dependent increases in CAT activity of up to 600-fold. These data demonstrate that although liganded ER exhibits the capacity to fully activate a transiently transfected VIT promoter, under some circumstances the ability to reorganize a repressive chromatin structure may be limiting for steroid receptor action. |
---|---|
ISSN: | 0013-7227 1945-7170 |
DOI: | 10.1210/endo.141.7.7564 |