Hypergeometric \(\ell\)-adic sheaves for reductive groups
We define the hypergeometric exponential sum associated to a finite family of representations of a reductive group over a finite field. We introduce the hypergeometric \(\ell\)-adic sheaf to describe the behavior of the hypergeometric exponential sum. It is a perverse sheaf, and it is the counterpar...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define the hypergeometric exponential sum associated to a finite family of representations of a reductive group over a finite field. We introduce the hypergeometric \(\ell\)-adic sheaf to describe the behavior of the hypergeometric exponential sum. It is a perverse sheaf, and it is the counterpart in characteristic \(p\) of the \(A\)-hypergeometric \(\mathcal D\)-module introduced by Kapranov. Using the theory of the Fourier transform for vector bundles over a general base developed by Wang, we are able to study the hypergeometric \(\ell\)-adic sheaf via the hypergeometric \(\mathcal D\)-module. We apply our results to the estimation of the hypergeometric exponential sum. |
---|---|
ISSN: | 2331-8422 |