Hypergeometric \(\ell\)-adic sheaves for reductive groups

We define the hypergeometric exponential sum associated to a finite family of representations of a reductive group over a finite field. We introduce the hypergeometric \(\ell\)-adic sheaf to describe the behavior of the hypergeometric exponential sum. It is a perverse sheaf, and it is the counterpar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Fu, Lei, Li, Xuanyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define the hypergeometric exponential sum associated to a finite family of representations of a reductive group over a finite field. We introduce the hypergeometric \(\ell\)-adic sheaf to describe the behavior of the hypergeometric exponential sum. It is a perverse sheaf, and it is the counterpart in characteristic \(p\) of the \(A\)-hypergeometric \(\mathcal D\)-module introduced by Kapranov. Using the theory of the Fourier transform for vector bundles over a general base developed by Wang, we are able to study the hypergeometric \(\ell\)-adic sheaf via the hypergeometric \(\mathcal D\)-module. We apply our results to the estimation of the hypergeometric exponential sum.
ISSN:2331-8422