Pulsatile Exocytosis Is Functionally Associated with GnRH Gene Expression in Immortalized GnRH-Expressing Cells

Pulsatile release of GnRH is essential for proper reproductive function, but little information is available on the molecular processes underlying this intermittent activity. Recently, GnRH gene expression (GnRH-GE) episodes and exocytotic pulses have been identified separately in individual GnRH-ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2001-12, Vol.142 (12), p.5364-5370
Hauptverfasser: Vazquez-Martinez, Rafael, Shorte, Spencer L, Faught, William J, Leaumont, David C, Frawley, L. Stephen, Boockfor, Fredric R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulsatile release of GnRH is essential for proper reproductive function, but little information is available on the molecular processes underlying this intermittent activity. Recently, GnRH gene expression (GnRH-GE) episodes and exocytotic pulses have been identified separately in individual GnRH-expressing cells, raising the exciting possibility that both activities are linked functionally and are fundamental to the pulsatile process. To explore this, we monitored GnRH-GE (using a GnRH promoter-driven luciferase reporter) and exocytosis (by FM1-43 fluorescence) in the same, living GT1-7 cells. Our results revealed a strong temporal association between exocytotic pulses and GnRH-GE episodes. To determine whether a functional link existed, we blocked one process and evaluated the other. Transcriptional inhibition with actinomycin D had only a modest influence on exocytosis, suggesting that exocytotic pulse activity was not dictated acutely by episodes of gene expression. In contrast, blockage of exocytosis with anti-SNAP-25 (which obstructs secretory granule fusion) abolished GnRH-GE pulse activity, indicating that part of the exocytotic process is responsible for triggering episodes of GnRH-GE. When taken together, our findings suggest that a careful balance is maintained between release and biosynthesis in GT1-7 cells. Such a property may be important in the hypothalamus to ensure that GnRH neurons are in a constant state of readiness to respond to changes in reproductive function.
ISSN:0013-7227
1945-7170
DOI:10.1210/endo.142.12.8551