Encoding of Probability Distributions for Quantum Monte Carlo Using Tensor Networks

The application of Tensor Networks (TN) in quantum computing has shown promise, particularly for data loading. However, the assumption that data is readily available often renders the integration of TN techniques into Quantum Monte Carlo (QMC) inefficient, as complete probability distributions would...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Pereira, Antonio, Villarino, Alba, Cortines, Aser, Mugel, Samuel, Orus, Roman, Victor Leme Beltran, Scursulim, J V S, Brito, Samurai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of Tensor Networks (TN) in quantum computing has shown promise, particularly for data loading. However, the assumption that data is readily available often renders the integration of TN techniques into Quantum Monte Carlo (QMC) inefficient, as complete probability distributions would have to be calculated classically. In this paper the tensor-train cross approximation (TT-cross) algorithm is evaluated as a means to address the probability loading problem. We demonstrate the effectiveness of this method on financial distributions, showcasing the TT-cross approach's scalability and accuracy. Our results indicate that the TT-cross method significantly improves circuit depth scalability compared to traditional methods, offering a more efficient pathway for implementing QMC on near-term quantum hardware. The approach also shows high accuracy and scalability in handling high-dimensional financial data, making it a promising solution for quantum finance applications.
ISSN:2331-8422