How bad could it be? Modelling the 3D complexity of the polarised dust signal using moment expansion
The variation of the physical conditions across the three dimensions of our Galaxy is a major source of complexity for the modelling of the foreground signal facing the cosmic microwave background (CMB). In the present work, we demonstrate that the spin-moment expansion formalism provides a powerful...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The variation of the physical conditions across the three dimensions of our Galaxy is a major source of complexity for the modelling of the foreground signal facing the cosmic microwave background (CMB). In the present work, we demonstrate that the spin-moment expansion formalism provides a powerful framework to model and understand this complexity, with a special focus on that arising from variations of the physical conditions along each line-of-sight on the sky. We perform the first application of the moment expansion to reproduce a thermal dust model largely used by the CMB community, demonstrating its power as a minimal tool to compress, understand and model the information contained within any foreground model. Furthermore, we use this framework to produce new models of thermal dust emission containing the maximal amount of complexity allowed by the current data, remaining compatible with the observed angular power-spectra by the \(Planck\) mission. By assessing the impact of these models on the performance of component separation methodologies, we conclude that the additional complexity contained within the third dimension could represent a significant challenge for future CMB experiments and that different component separation approaches are sensitive to different properties of the moments. |
---|---|
ISSN: | 2331-8422 |