Single-cone Dirac edge states on a lattice
The stationary Dirac equation \((p\cdot\sigma)\psi=E\psi\), confined to a two-dimensional (2D) region, supports states propagating along the boundary and decaying exponentially away from the boundary. These edge states appear on the 2D surface of a 3D topological insulator, where massless fermionic...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The stationary Dirac equation \((p\cdot\sigma)\psi=E\psi\), confined to a two-dimensional (2D) region, supports states propagating along the boundary and decaying exponentially away from the boundary. These edge states appear on the 2D surface of a 3D topological insulator, where massless fermionic quasiparticles are governed by the Dirac equation and confined by a magnetic insulator. We show how the continuous system can be simulated on a 2D square lattice, without running into the fermion-doubling obstruction. For that purpose we adapt the existing tangent fermion discretization on an unbounded lattice to account for a lattice termination that simulates the magnetic insulator interface. |
---|---|
ISSN: | 2331-8422 |