THE WIGNER PROPERTY OF SMOOTH NORMED SPACES
We prove that every smooth complex normed space X has the Wigner property. That is, for any complex normed space Y and every surjective mapping $f: X\rightarrow Y$ satisfying $$ \begin{align*} \{\|f(x)+\alpha f(y)\|: \alpha\in \mathbb{T}\}=\{\|x+\alpha y\|: \alpha\in \mathbb{T}\}, \quad x,y\in X, \e...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2024-12, Vol.110 (3), p.545-553 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that every smooth complex normed space X has the Wigner property. That is, for any complex normed space Y and every surjective mapping
$f: X\rightarrow Y$
satisfying
$$ \begin{align*} \{\|f(x)+\alpha f(y)\|: \alpha\in \mathbb{T}\}=\{\|x+\alpha y\|: \alpha\in \mathbb{T}\}, \quad x,y\in X, \end{align*} $$
where
$\mathbb {T}$
is the unit circle of the complex plane, there exists a function
$\sigma : X\rightarrow \mathbb {T}$
such that
$\sigma \cdot f$
is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972724000248 |