THE WIGNER PROPERTY OF SMOOTH NORMED SPACES

We prove that every smooth complex normed space X has the Wigner property. That is, for any complex normed space Y and every surjective mapping $f: X\rightarrow Y$ satisfying $$ \begin{align*} \{\|f(x)+\alpha f(y)\|: \alpha\in \mathbb{T}\}=\{\|x+\alpha y\|: \alpha\in \mathbb{T}\}, \quad x,y\in X, \e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2024-12, Vol.110 (3), p.545-553
Hauptverfasser: HUANG, XUJIAN, LIU, JIABIN, WANG, SHUMING
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that every smooth complex normed space X has the Wigner property. That is, for any complex normed space Y and every surjective mapping $f: X\rightarrow Y$ satisfying $$ \begin{align*} \{\|f(x)+\alpha f(y)\|: \alpha\in \mathbb{T}\}=\{\|x+\alpha y\|: \alpha\in \mathbb{T}\}, \quad x,y\in X, \end{align*} $$ where $\mathbb {T}$ is the unit circle of the complex plane, there exists a function $\sigma : X\rightarrow \mathbb {T}$ such that $\sigma \cdot f$ is a linear or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972724000248