Spectral properties of symmetrized AMV operators

The symmetrized Asymptotic Mean Value Laplacian \(\tilde{\Delta}\), obtained as limit of approximating operators \(\tilde{\Delta}_r\), is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that, as \(r \downarrow 0\), the operators \(\tilde{\Delta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Dias, Manuel, Tewodrose, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The symmetrized Asymptotic Mean Value Laplacian \(\tilde{\Delta}\), obtained as limit of approximating operators \(\tilde{\Delta}_r\), is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that, as \(r \downarrow 0\), the operators \(\tilde{\Delta}_r\) eventually admit isolated eigenvalues defined via min-max procedure on any compact locally Ahlfors regular metric measure space. Then we prove \(L^2\) and spectral convergence of \(\tilde{\Delta}_r\) to the Laplace--Beltrami operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold has a non-empty boundary.
ISSN:2331-8422