Spectral properties of symmetrized AMV operators
The symmetrized Asymptotic Mean Value Laplacian \(\tilde{\Delta}\), obtained as limit of approximating operators \(\tilde{\Delta}_r\), is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that, as \(r \downarrow 0\), the operators \(\tilde{\Delta...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The symmetrized Asymptotic Mean Value Laplacian \(\tilde{\Delta}\), obtained as limit of approximating operators \(\tilde{\Delta}_r\), is an extension of the classical Euclidean Laplace operator to the realm of metric measure spaces. We show that, as \(r \downarrow 0\), the operators \(\tilde{\Delta}_r\) eventually admit isolated eigenvalues defined via min-max procedure on any compact locally Ahlfors regular metric measure space. Then we prove \(L^2\) and spectral convergence of \(\tilde{\Delta}_r\) to the Laplace--Beltrami operator of a compact Riemannian manifold, imposing Neumann conditions when the manifold has a non-empty boundary. |
---|---|
ISSN: | 2331-8422 |