Gröbner bases, resolutions, and the Lefschetz properties for powers of a general linear form in the squarefree algebra
For the almost complete intersection ideals \((x_1^2, \dots, x_n^2, (x_1 + \cdots + x_n)^k)\), we compute their reduced Gr\"obner basis for any term ordering, revealing a combinatorial structure linked to lattice paths, elementary symmetric polynomials, and Catalan numbers. Using this structure...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the almost complete intersection ideals \((x_1^2, \dots, x_n^2, (x_1 + \cdots + x_n)^k)\), we compute their reduced Gr\"obner basis for any term ordering, revealing a combinatorial structure linked to lattice paths, elementary symmetric polynomials, and Catalan numbers. Using this structure, we classify the weak Lefschetz property for these ideals. Additionally, we provide a new proof of the well-known result that the squarefree algebra satisfies the strong Lefschetz property. Finally, we compute the Betti numbers of the initial ideals and construct a minimal free resolution using a Mayer-Vietoris tree approach. |
---|---|
ISSN: | 2331-8422 |