Gröbner bases, resolutions, and the Lefschetz properties for powers of a general linear form in the squarefree algebra

For the almost complete intersection ideals \((x_1^2, \dots, x_n^2, (x_1 + \cdots + x_n)^k)\), we compute their reduced Gr\"obner basis for any term ordering, revealing a combinatorial structure linked to lattice paths, elementary symmetric polynomials, and Catalan numbers. Using this structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Filip Jonsson Kling, Lundqvist, Samuel, Mohammadi, Fatemeh, Orth, Matthias, Sáenz-de-Cabezón, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the almost complete intersection ideals \((x_1^2, \dots, x_n^2, (x_1 + \cdots + x_n)^k)\), we compute their reduced Gr\"obner basis for any term ordering, revealing a combinatorial structure linked to lattice paths, elementary symmetric polynomials, and Catalan numbers. Using this structure, we classify the weak Lefschetz property for these ideals. Additionally, we provide a new proof of the well-known result that the squarefree algebra satisfies the strong Lefschetz property. Finally, we compute the Betti numbers of the initial ideals and construct a minimal free resolution using a Mayer-Vietoris tree approach.
ISSN:2331-8422