Effects of non-Newtonian models on viscosity of unsteady aortic blood flow

Computational hemodynamics plays a crucial role in reproducing the details of aortic blood flow. However, the application of the non-Newtonian viscosity model is still controversial. The objective of this study is to demonstrate the effects of different non-Newtonian models on the viscosity of blood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-11, Vol.36 (11)
Hauptverfasser: Qiao, Yonghui, Sun, Yifan, Guo, Hengjie, Pan, Zhouzhou, Wang, Shuai, Fan, Jianren, Luo, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computational hemodynamics plays a crucial role in reproducing the details of aortic blood flow. However, the application of the non-Newtonian viscosity model is still controversial. The objective of this study is to demonstrate the effects of different non-Newtonian models on the viscosity of blood flow in healthy aorta. First, we reconstructed the three-dimensional geometric models of two healthy aortas based on computed tomography angiography images. The blood flow waveform with parabolic distribution and the three-element Windkessel model were adopted as boundary conditions. Then, the interaction between the blood flow and hyperelastic aortic vessel wall was considered by the two-way fluid–structure interaction method. Finally, we chose four commonly used non-Newtonian viscosity models: the Quemada model, Casson model, Carreau, and Carreau–Yasuda models. Results show that the instantaneous low shear strain rate (SSR 
ISSN:1070-6631
1089-7666
DOI:10.1063/5.0233940