Synchronously improved luminescence efficiency and thermal stability of organic–inorganic chloride single crystals through doping of Sb3

Herein, (CH3)4NMnCl3 doped with Sb3+ single crystals were grown at room temperature. The crystal structure was confirmed by the single-crystal X-ray diffraction at 293 K. The doping of Sb3+ not only improves the excitation intensity in the blue-light region but also red emission only from Mn2+. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2024-11, Vol.48 (45), p.19030-19033
Hauptverfasser: Chen, Zongqi, Li, Aibo, Xie, Yushan, Long, Haoqi, Zhou, Qiang, Long, Jiang, Ren, Peng, Wang, Zhengliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, (CH3)4NMnCl3 doped with Sb3+ single crystals were grown at room temperature. The crystal structure was confirmed by the single-crystal X-ray diffraction at 293 K. The doping of Sb3+ not only improves the excitation intensity in the blue-light region but also red emission only from Mn2+. The emission intensity (Ie) of (CH3)4NMnCl3:0.5%Sb3+ is about 1.5 times higher than that of (CH3)4NMnCl3. The internal and external quantum yield (IQY and EQY) values excited by 450 nm light for the former are 78.6% and 16.0%, which are much higher than those of the latter (56.3% and 10.7%), indicating that Sb3+ can effectively transfer energy to Mn2+. Moreover, the doping of Sb3+ is beneficial to the thermal stability. The Ie of (CH3)4NMnCl3:0.5%Sb3+ at 150 °C is about 1.2 times higher than that of (CH3)4NMnCl3 at 25 °C. Meanwhile, the white LED based on (CH3)4NMnCl3:0.5%Sb3+ also exhibits good optoelectronic performance. Hence, this work provides a new strategy to explore hybrid manganese(ii) chlorides for white LEDs.
ISSN:1144-0546
1369-9261
DOI:10.1039/d4nj04101a