STRONG COMPACTNESS, SQUARE, GCH, AND WOODIN CARDINALS
We show the consistency, relative to the appropriate supercompactness or strong compactness assumptions, of the existence of a non-supercompact strongly compact cardinal $\kappa _0$ (the least measurable cardinal) exhibiting properties which are impossible when $\kappa _0$ is supercompact. In partic...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2024-09, Vol.89 (3), p.1180-1188 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show the consistency, relative to the appropriate supercompactness or strong compactness assumptions, of the existence of a non-supercompact strongly compact cardinal
$\kappa _0$
(the least measurable cardinal) exhibiting properties which are impossible when
$\kappa _0$
is supercompact. In particular, we construct models in which
$\square _{\kappa ^+}$
holds for every inaccessible cardinal
$\kappa $
except
$\kappa _0$
, GCH fails at every inaccessible cardinal except
$\kappa _0$
, and
$\kappa _0$
is less than the least Woodin cardinal. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2022.62 |