STRONG COMPACTNESS, SQUARE, GCH, AND WOODIN CARDINALS

We show the consistency, relative to the appropriate supercompactness or strong compactness assumptions, of the existence of a non-supercompact strongly compact cardinal $\kappa _0$ (the least measurable cardinal) exhibiting properties which are impossible when $\kappa _0$ is supercompact. In partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2024-09, Vol.89 (3), p.1180-1188
1. Verfasser: APTER, ARTHUR W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show the consistency, relative to the appropriate supercompactness or strong compactness assumptions, of the existence of a non-supercompact strongly compact cardinal $\kappa _0$ (the least measurable cardinal) exhibiting properties which are impossible when $\kappa _0$ is supercompact. In particular, we construct models in which $\square _{\kappa ^+}$ holds for every inaccessible cardinal $\kappa $ except $\kappa _0$ , GCH fails at every inaccessible cardinal except $\kappa _0$ , and $\kappa _0$ is less than the least Woodin cardinal.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2022.62