REFLECTION IN SECOND-ORDER SET THEORY WITH ABUNDANT URELEMENTS BI-INTERPRETS A SUPERCOMPACT CARDINAL

After reviewing various natural bi-interpretations in urelement set theory, including second-order set theories with urelements, we explore the strength of second-order reflection in these contexts. Ultimately, we prove that second-order reflection with the abundant atom axiom is bi-interpretable an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2024-09, Vol.89 (3), p.1007-1043
Hauptverfasser: HAMKINS, JOEL DAVID, YAO, BOKAI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:After reviewing various natural bi-interpretations in urelement set theory, including second-order set theories with urelements, we explore the strength of second-order reflection in these contexts. Ultimately, we prove that second-order reflection with the abundant atom axiom is bi-interpretable and hence also equiconsistent with the existence of a supercompact cardinal. The proof relies on a reflection characterization of supercompactness, namely, a cardinal $\kappa $ is supercompact if and only if every $\Pi ^1_1$ sentence true in a structure M (of any size) containing $\kappa $ in a language of size less than $\kappa $ is also true in a substructure $m\prec M$ of size less than $\kappa $ with $m\cap \kappa \in \kappa $ .
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2022.87