REFLECTION IN SECOND-ORDER SET THEORY WITH ABUNDANT URELEMENTS BI-INTERPRETS A SUPERCOMPACT CARDINAL
After reviewing various natural bi-interpretations in urelement set theory, including second-order set theories with urelements, we explore the strength of second-order reflection in these contexts. Ultimately, we prove that second-order reflection with the abundant atom axiom is bi-interpretable an...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2024-09, Vol.89 (3), p.1007-1043 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | After reviewing various natural bi-interpretations in urelement set theory, including second-order set theories with urelements, we explore the strength of second-order reflection in these contexts. Ultimately, we prove that second-order reflection with the abundant atom axiom is bi-interpretable and hence also equiconsistent with the existence of a supercompact cardinal. The proof relies on a reflection characterization of supercompactness, namely, a cardinal
$\kappa $
is supercompact if and only if every
$\Pi ^1_1$
sentence true in a structure M (of any size) containing
$\kappa $
in a language of size less than
$\kappa $
is also true in a substructure
$m\prec M$
of size less than
$\kappa $
with
$m\cap \kappa \in \kappa $
. |
---|---|
ISSN: | 0022-4812 1943-5886 |
DOI: | 10.1017/jsl.2022.87 |