Highly connected triples and Mader's conjecture
Mader proved that, for any tree T $T$ of order m $m$, every k $k$‐connected graph G $G$ with δ ( G ) ≥ 2 ( k + m − 1 ) 2 + m − 1 $\delta (G)\ge 2{(k+m-1)}^{2}+m-1$ contains a subtree T ′ ≅ T ${T}^{^{\prime} }\cong T$ such that G − V ( T ′ ) $G-V({T}^{^{\prime} })$ is k $k$‐connected. We proved that...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2024-11, Vol.107 (3), p.478-484 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mader proved that, for any tree
T $T$ of order
m $m$, every
k $k$‐connected graph
G $G$ with
δ
(
G
)
≥
2
(
k
+
m
−
1
)
2
+
m
−
1 $\delta (G)\ge 2{(k+m-1)}^{2}+m-1$ contains a subtree
T
′
≅
T ${T}^{^{\prime} }\cong T$ such that
G
−
V
(
T
′
) $G-V({T}^{^{\prime} })$ is
k $k$‐connected. We proved that any graph
G $G$ with minimum degree
δ
(
G
)
≥
2
k $\delta (G)\ge 2k$ contains
k $k$‐connected triples. As a corollary, we prove that, for any tree
T $T$ of order
m $m$, every
k $k$‐connected graph
G $G$ with
δ
(
G
)
≥
3
k
+
4
m
−
6 $\delta (G)\ge 3k+4m-6$ contains a subtree
T
′
≅
T ${T}^{^{\prime} }\cong T$ such that
G
−
V
(
T
′
) $G-V({T}^{^{\prime} })$ is still
k $k$‐connected, improving Mader's condition to a linear bound. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.23144 |