Highly connected triples and Mader's conjecture

Mader proved that, for any tree T $T$ of order m $m$, every k $k$‐connected graph G $G$ with δ ( G ) ≥ 2 ( k + m − 1 ) 2 + m − 1 $\delta (G)\ge 2{(k+m-1)}^{2}+m-1$ contains a subtree T ′ ≅ T ${T}^{^{\prime} }\cong T$ such that G − V ( T ′ ) $G-V({T}^{^{\prime} })$ is k $k$‐connected. We proved that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2024-11, Vol.107 (3), p.478-484
Hauptverfasser: Liu, Qinghai, Ying, Kai, Hong, Yanmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mader proved that, for any tree T $T$ of order m $m$, every k $k$‐connected graph G $G$ with δ ( G ) ≥ 2 ( k + m − 1 ) 2 + m − 1 $\delta (G)\ge 2{(k+m-1)}^{2}+m-1$ contains a subtree T ′ ≅ T ${T}^{^{\prime} }\cong T$ such that G − V ( T ′ ) $G-V({T}^{^{\prime} })$ is k $k$‐connected. We proved that any graph G $G$ with minimum degree δ ( G ) ≥ 2 k $\delta (G)\ge 2k$ contains k $k$‐connected triples. As a corollary, we prove that, for any tree T $T$ of order m $m$, every k $k$‐connected graph G $G$ with δ ( G ) ≥ 3 k + 4 m − 6 $\delta (G)\ge 3k+4m-6$ contains a subtree T ′ ≅ T ${T}^{^{\prime} }\cong T$ such that G − V ( T ′ ) $G-V({T}^{^{\prime} })$ is still k $k$‐connected, improving Mader's condition to a linear bound.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.23144