Resource leveling: complexity of a unit execution time two-processor scheduling variant and related problems
This paper mainly focuses on a resource leveling variant of a two-processor scheduling problem. The latter problem is to schedule a set of dependent UET jobs on two identical processors with minimum makespan. It is known to be polynomial-time solvable. In the variant we consider, the resource constr...
Gespeichert in:
Veröffentlicht in: | Journal of scheduling 2024-12, Vol.27 (6), p.587-606 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper mainly focuses on a resource leveling variant of a two-processor scheduling problem. The latter problem is to schedule a set of dependent UET jobs on two identical processors with minimum makespan. It is known to be polynomial-time solvable. In the variant we consider, the resource constraint on processors is relaxed and the objective is no longer to minimize makespan. Instead, a deadline is imposed on the makespan and the objective is to minimize the total resource use exceeding a threshold resource level of two. This resource leveling criterion is known as the
total overload cost
. Sophisticated matching arguments allow us to provide a polynomial algorithm computing the optimal solution as a function of the makespan deadline. It extends a solving method from the literature for the two-processor scheduling problem. Moreover, the complexity of related resource leveling problems sharing the same objective is studied. These results lead to polynomial or pseudo-polynomial algorithms or NP-hardness proofs, allowing for an interesting comparison with classical machine scheduling problems. |
---|---|
ISSN: | 1094-6136 1099-1425 |
DOI: | 10.1007/s10951-024-00822-z |