Perfect Matchings in Random Sparsifications of Dirac Hypergraphs
For all integers n ≥ k > d ≥ 1 , let m d ( k , n ) be the minimum integer D ≥ 0 such that every k -uniform n -vertex hypergraph H with minimum d -degree δ d ( H ) at least D has an optimal matching. For every fixed integer k ≥ 3 , we show that for n ∈ k N and p = Ω ( n - k + 1 log n ) , if H is a...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2024-12, Vol.44 (6), p.1233-1266 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For all integers
n
≥
k
>
d
≥
1
, let
m
d
(
k
,
n
)
be the minimum integer
D
≥
0
such that every
k
-uniform
n
-vertex hypergraph
H
with minimum
d
-degree
δ
d
(
H
)
at least
D
has an optimal matching. For every fixed integer
k
≥
3
, we show that for
n
∈
k
N
and
p
=
Ω
(
n
-
k
+
1
log
n
)
, if
H
is an
n
-vertex
k
-uniform hypergraph with
δ
k
-
1
(
H
)
≥
m
k
-
1
(
k
,
n
)
, then a.a.s. its
p
-random subhypergraph
H
p
contains a perfect matching. Moreover, for every fixed integer
d
<
k
and
γ
>
0
, we show that the same conclusion holds if
H
is an
n
-vertex
k
-uniform hypergraph with
δ
d
(
H
)
≥
m
d
(
k
,
n
)
+
γ
n
-
d
k
-
d
. Both of these results strengthen Johansson, Kahn, and Vu’s seminal solution to Shamir’s problem and can be viewed as “robust” versions of hypergraph Dirac-type results. In addition, we also show that in both cases above,
H
has at least
exp
(
(
1
-
1
/
k
)
n
log
n
-
Θ
(
n
)
)
many perfect matchings, which is best possible up to an
exp
(
Θ
(
n
)
)
factor. |
---|---|
ISSN: | 0209-9683 1439-6912 |
DOI: | 10.1007/s00493-024-00116-0 |