Kitaev interactions through extended superexchange pathways in the jeff=1/2 Ru3+ honeycomb magnet RuP3SiO11

Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-11, Vol.15 (1), p.9778
Hauptverfasser: Abdeldaim, Aly H., Gretarsson, Hlynur, Day, Sarah J., Le, M. Duc, Stenning, Gavin B. G., Manuel, Pascal, Perry, Robin S., Tsirlin, Alexander A., Nilsen, Gøran J., Clark, Lucy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru 3+ octahedra within the honeycomb layers of the inorganic framework solid, RuP 3 SiO 11 . We confirm the requisite j eff = 1 2 state of Ru 3+ in RuP 3 SiO 11 and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model. Recent theoretical studies indicate that the Kitaev model may be realized in framework materials exhibiting extended superexchange pathways. Here the authors report experimental evidence showing that the material requirements for a Kitaev quantum spin liquid are satisfied in a inorganic framework material.
ISSN:2041-1723
DOI:10.1038/s41467-024-53900-3