Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design
Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Borse, Aditya Gulakala, Rutwik Stoffel, Marcus |
description | Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, and for complex parts, multiple design parameters must be evaluated. This crashworthiness analysis requires computationally intensive finite element simulations. This challenge leads to the need for inverse multi-parameter multi-objective optimisation. This challenge leads to the need for multi-parameter, multi-objective inverse optimisation. This article investigates a machine learning-based method for this type of optimisation, focusing on the design optimisation of a multi-cell side sill to improve crashworthiness results. Furthermore, the optimiser is coupled with an FE solver to achieve improved results. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3128886092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128886092</sourcerecordid><originalsourceid>FETCH-proquest_journals_31288860923</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoW5pa2nrPooQiynmXl1a7oZtvs-xPqA3o6cM6ZkIALEUdyxfmMhM41jDGernmSiIDcMnhDa3roQHtqKnoB1JWxj684grIadU3vykFJz73HDp3yaDQ9gX-ako4zzbGEKMe2pRk4rPWCTCvVOgh_nJPlfnfdHqLemtcAzheNGaweUyFiLqVM2YaL_64P2nxA3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128886092</pqid></control><display><type>article</type><title>Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design</title><source>Free E- Journals</source><creator>Borse, Aditya ; Gulakala, Rutwik ; Stoffel, Marcus</creator><creatorcontrib>Borse, Aditya ; Gulakala, Rutwik ; Stoffel, Marcus</creatorcontrib><description>Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, and for complex parts, multiple design parameters must be evaluated. This crashworthiness analysis requires computationally intensive finite element simulations. This challenge leads to the need for inverse multi-parameter multi-objective optimisation. This challenge leads to the need for multi-parameter, multi-objective inverse optimisation. This article investigates a machine learning-based method for this type of optimisation, focusing on the design optimisation of a multi-cell side sill to improve crashworthiness results. Furthermore, the optimiser is coupled with an FE solver to achieve improved results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crashworthiness ; Design factors ; Design optimization ; Design parameters ; Impact strength ; Machine learning ; Multiple objective analysis</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Borse, Aditya</creatorcontrib><creatorcontrib>Gulakala, Rutwik</creatorcontrib><creatorcontrib>Stoffel, Marcus</creatorcontrib><title>Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design</title><title>arXiv.org</title><description>Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, and for complex parts, multiple design parameters must be evaluated. This crashworthiness analysis requires computationally intensive finite element simulations. This challenge leads to the need for inverse multi-parameter multi-objective optimisation. This challenge leads to the need for multi-parameter, multi-objective inverse optimisation. This article investigates a machine learning-based method for this type of optimisation, focusing on the design optimisation of a multi-cell side sill to improve crashworthiness results. Furthermore, the optimiser is coupled with an FE solver to achieve improved results.</description><subject>Crashworthiness</subject><subject>Design factors</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Impact strength</subject><subject>Machine learning</subject><subject>Multiple objective analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoW5pa2nrPooQiynmXl1a7oZtvs-xPqA3o6cM6ZkIALEUdyxfmMhM41jDGernmSiIDcMnhDa3roQHtqKnoB1JWxj684grIadU3vykFJz73HDp3yaDQ9gX-ako4zzbGEKMe2pRk4rPWCTCvVOgh_nJPlfnfdHqLemtcAzheNGaweUyFiLqVM2YaL_64P2nxA3Q</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Borse, Aditya</creator><creator>Gulakala, Rutwik</creator><creator>Stoffel, Marcus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241114</creationdate><title>Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design</title><author>Borse, Aditya ; Gulakala, Rutwik ; Stoffel, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31288860923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crashworthiness</topic><topic>Design factors</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Impact strength</topic><topic>Machine learning</topic><topic>Multiple objective analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Borse, Aditya</creatorcontrib><creatorcontrib>Gulakala, Rutwik</creatorcontrib><creatorcontrib>Stoffel, Marcus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borse, Aditya</au><au>Gulakala, Rutwik</au><au>Stoffel, Marcus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design</atitle><jtitle>arXiv.org</jtitle><date>2024-11-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, and for complex parts, multiple design parameters must be evaluated. This crashworthiness analysis requires computationally intensive finite element simulations. This challenge leads to the need for inverse multi-parameter multi-objective optimisation. This challenge leads to the need for multi-parameter, multi-objective inverse optimisation. This article investigates a machine learning-based method for this type of optimisation, focusing on the design optimisation of a multi-cell side sill to improve crashworthiness results. Furthermore, the optimiser is coupled with an FE solver to achieve improved results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3128886092 |
source | Free E- Journals |
subjects | Crashworthiness Design factors Design optimization Design parameters Impact strength Machine learning Multiple objective analysis |
title | Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Developement%20of%20Reinforcement%20Learning%20based%20Optimisation%20Method%20for%20Side-Sill%20Design&rft.jtitle=arXiv.org&rft.au=Borse,%20Aditya&rft.date=2024-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3128886092%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128886092&rft_id=info:pmid/&rfr_iscdi=true |