Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design

Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Borse, Aditya, Gulakala, Rutwik, Stoffel, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Borse, Aditya
Gulakala, Rutwik
Stoffel, Marcus
description Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, and for complex parts, multiple design parameters must be evaluated. This crashworthiness analysis requires computationally intensive finite element simulations. This challenge leads to the need for inverse multi-parameter multi-objective optimisation. This challenge leads to the need for multi-parameter, multi-objective inverse optimisation. This article investigates a machine learning-based method for this type of optimisation, focusing on the design optimisation of a multi-cell side sill to improve crashworthiness results. Furthermore, the optimiser is coupled with an FE solver to achieve improved results.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3128886092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128886092</sourcerecordid><originalsourceid>FETCH-proquest_journals_31288860923</originalsourceid><addsrcrecordid>eNqNitEKgjAUQEcQJOU_DHoW5pa2nrPooQiynmXl1a7oZtvs-xPqA3o6cM6ZkIALEUdyxfmMhM41jDGernmSiIDcMnhDa3roQHtqKnoB1JWxj684grIadU3vykFJz73HDp3yaDQ9gX-ako4zzbGEKMe2pRk4rPWCTCvVOgh_nJPlfnfdHqLemtcAzheNGaweUyFiLqVM2YaL_64P2nxA3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128886092</pqid></control><display><type>article</type><title>Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design</title><source>Free E- Journals</source><creator>Borse, Aditya ; Gulakala, Rutwik ; Stoffel, Marcus</creator><creatorcontrib>Borse, Aditya ; Gulakala, Rutwik ; Stoffel, Marcus</creatorcontrib><description>Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, and for complex parts, multiple design parameters must be evaluated. This crashworthiness analysis requires computationally intensive finite element simulations. This challenge leads to the need for inverse multi-parameter multi-objective optimisation. This challenge leads to the need for multi-parameter, multi-objective inverse optimisation. This article investigates a machine learning-based method for this type of optimisation, focusing on the design optimisation of a multi-cell side sill to improve crashworthiness results. Furthermore, the optimiser is coupled with an FE solver to achieve improved results.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Crashworthiness ; Design factors ; Design optimization ; Design parameters ; Impact strength ; Machine learning ; Multiple objective analysis</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Borse, Aditya</creatorcontrib><creatorcontrib>Gulakala, Rutwik</creatorcontrib><creatorcontrib>Stoffel, Marcus</creatorcontrib><title>Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design</title><title>arXiv.org</title><description>Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, and for complex parts, multiple design parameters must be evaluated. This crashworthiness analysis requires computationally intensive finite element simulations. This challenge leads to the need for inverse multi-parameter multi-objective optimisation. This challenge leads to the need for multi-parameter, multi-objective inverse optimisation. This article investigates a machine learning-based method for this type of optimisation, focusing on the design optimisation of a multi-cell side sill to improve crashworthiness results. Furthermore, the optimiser is coupled with an FE solver to achieve improved results.</description><subject>Crashworthiness</subject><subject>Design factors</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Impact strength</subject><subject>Machine learning</subject><subject>Multiple objective analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNitEKgjAUQEcQJOU_DHoW5pa2nrPooQiynmXl1a7oZtvs-xPqA3o6cM6ZkIALEUdyxfmMhM41jDGernmSiIDcMnhDa3roQHtqKnoB1JWxj684grIadU3vykFJz73HDp3yaDQ9gX-ako4zzbGEKMe2pRk4rPWCTCvVOgh_nJPlfnfdHqLemtcAzheNGaweUyFiLqVM2YaL_64P2nxA3Q</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Borse, Aditya</creator><creator>Gulakala, Rutwik</creator><creator>Stoffel, Marcus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241114</creationdate><title>Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design</title><author>Borse, Aditya ; Gulakala, Rutwik ; Stoffel, Marcus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31288860923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Crashworthiness</topic><topic>Design factors</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Impact strength</topic><topic>Machine learning</topic><topic>Multiple objective analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Borse, Aditya</creatorcontrib><creatorcontrib>Gulakala, Rutwik</creatorcontrib><creatorcontrib>Stoffel, Marcus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borse, Aditya</au><au>Gulakala, Rutwik</au><au>Stoffel, Marcus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design</atitle><jtitle>arXiv.org</jtitle><date>2024-11-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, and for complex parts, multiple design parameters must be evaluated. This crashworthiness analysis requires computationally intensive finite element simulations. This challenge leads to the need for inverse multi-parameter multi-objective optimisation. This challenge leads to the need for multi-parameter, multi-objective inverse optimisation. This article investigates a machine learning-based method for this type of optimisation, focusing on the design optimisation of a multi-cell side sill to improve crashworthiness results. Furthermore, the optimiser is coupled with an FE solver to achieve improved results.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3128886092
source Free E- Journals
subjects Crashworthiness
Design factors
Design optimization
Design parameters
Impact strength
Machine learning
Multiple objective analysis
title Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Developement%20of%20Reinforcement%20Learning%20based%20Optimisation%20Method%20for%20Side-Sill%20Design&rft.jtitle=arXiv.org&rft.au=Borse,%20Aditya&rft.date=2024-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3128886092%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128886092&rft_id=info:pmid/&rfr_iscdi=true