Developement of Reinforcement Learning based Optimisation Method for Side-Sill Design

Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Borse, Aditya, Gulakala, Rutwik, Stoffel, Marcus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimisation for crashworthiness is a critical part of the vehicle development process. Due to stringent regulations and increasing market demands, multiple factors must be considered within a limited timeframe. However, for optimal crashworthiness design, multiobjective optimisation is necessary, and for complex parts, multiple design parameters must be evaluated. This crashworthiness analysis requires computationally intensive finite element simulations. This challenge leads to the need for inverse multi-parameter multi-objective optimisation. This challenge leads to the need for multi-parameter, multi-objective inverse optimisation. This article investigates a machine learning-based method for this type of optimisation, focusing on the design optimisation of a multi-cell side sill to improve crashworthiness results. Furthermore, the optimiser is coupled with an FE solver to achieve improved results.
ISSN:2331-8422